tìm x,y thuộc N* thỏa mãn

x2-xy+y^2=x^2y^2 - 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)

\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)

\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)

\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)

\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)

1 tháng 6 2015

sorry lam lon

M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy

Do  x,y > 0 nên áp dụng cô si cho 5 số dương ta có :

M  ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3)   (*)

Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :

≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2

Dau " ≥ " khi 

{x^2/4xy = 4y^2/4xy

{x^3=8y^3

=>x  ≥  2y

Vậy :​x  ≥ 2y

10 tháng 1 2016

bạn nhóm thành các bình phương nhé. còn dư 4xy với 1.

10 tháng 1 2016

bạn trình bày cho mình đc ko?