Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo sol ở đây nhé !
IMO ShortList 1998, number theory problem 1
Hơi bị gắt đó,IMO 1998 ( mặc dù đề lệch 1 tẹo so với IMO )
Rảnh thì tớ sẽ sol cho các bạn xem,cậu vào TKHĐ của tớ là thấy link nhé !!!
Khai triển: \(\left(x+y\right)^2+\left(xy-1\right)\left(x+y\right)+\left(xy-5\right)=0\).
Ta coi như là một phương trình bậc hai ẩn \(x+y\).
\(\Delta=\left(xy-1\right)^2-4\left(xy-5\right)=\left(xy-3\right)^2+12\)
Để phương trình có nghiệm nguyên thì \(\Delta\) chính phương, cộng với \(\left(xy-3\right)^2\) đã là một số chính phương.
Nghĩa là ta cần tìm 2 số chính phương hơn kém nhau 12 đơn vị. Đó là số 4 và 16.
Tức là \(\left(xy-3\right)^2=4\) (số chính phương nhỏ hơn)
Hay \(xy=5\) hoặc \(xy=1\).
Thử lại thì \(x=y=1\) hoặc \(x=y=-1\)
Giải
5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )
= [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2 )
= ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )
= A2 - 4 ( A - 2 )
<=> A2 - 4.A + 3 = 0
<=> \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)
Lưu ý : đặt : A = xy - x - 2y + 4
TH1 : xy - x - 2.y + 4 = 3
<=> xy - x - 2y + 1 = 0
<=> x.( y - 1 ) - 2.(y-1 ) = 1
<=> ( x - 2 ) ( y - 1 ) = 1
Ta có bảng :
x-2 | 1 | -1 |
y - 1 | 1 | -1 |
x | 3 | -1 |
y | 2 | 0 |
TH2 : xy - x - 2y + 4 = 1
<=> ( x- 2 ) . ( y -1 ) =-1
x-2 | -1 | 1 |
y - 1 | 1 | -1 |
x | -1 | 3 |
y | 2 | 0 |
ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên
\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)
từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được
\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)
=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)
=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)
zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)
=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)
mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)
zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0
zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)
zới y=2 , m=1 thì ta tính đc x=1
zới y=3 , m=1 thì ta tính đc x=-1
zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)