Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi như sau:
\(3x^2-3xy-5x-y=-20\Leftrightarrow3x^2+x-3xy-y-6x-2=-22\)
\(\Leftrightarrow x\left(3x+1\right)-y\left(3x+1\right)-2\left(3x+1\right)=-22\)
\(\Leftrightarrow\left(3x+1\right)\left(x-y-2\right)=-22\)
Ta có bảng sau:
3x+1 | -22 | -11 | -2 | -1 | 1 | 2 | 11 | 22 |
x | \(-\frac{23}{3}\left(Loại\right)\) | -4(Nhận) | -1(N) | (L) | 0(N) | (L) | (L) | 7(N) |
x-y-2 | 1 | 2 | 11 | 22 | -22 | -11 | -2 | -1 |
y | -8(Nhận) | -14(N) | 20(N) | 6(N) |
Vậy ta tìm được các cặp (-4;-8); (-1;-14); (0;20); (7;6).
Chúc em học tốt :))
\(25-y^2=8\left(x-2015\right)^2\)
\(\Leftrightarrow\left(5-y\right)\left(y+5\right)=8\left(x-2015\right)^2\)
Do vế phải luôn không âm nên: vế trái luôn không ấm.
Tức là: \(-5\le y\le5\).Ta có bảng sau:
y | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
8(x - 2015)2 | \(0\) | 9 | 16 | 21 | 24 | 25 | 24 | 21 | 16 | 9 | 0 |
x | 0 | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | 0 |
Vậy: (x;y) = (0;-5) và (0;5)
ta có 2x = 3y => 2x/3 = y
2x=4z => 2x/4 = z => x/2 = z
thay vào 2x - y + z = 15
2x - 2x/3 + x/2 =15
x(2-2/3+1/2) = 15
11x/6 = 15
11x= 90
x=90/11
y=60/11
z=45/11
Từ \(2x=3y=4z\) \(\Rightarrow\hept{\begin{cases}2x=3y\\3y=4z\end{cases}}\)
Từ \(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{4}=\frac{y}{2}.\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}\)( 1 )
Từ \(3y=4z\)\(\Rightarrow\)\(\frac{y}{4}=\frac{z}{3}=\frac{y}{4}.\frac{1}{2}=\frac{z}{3}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{y}{8}=\frac{z}{6}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}=\frac{2x}{24}=\frac{y}{8}=\frac{z}{6}=\frac{2x-y+z}{24-8+6}=\frac{15}{22}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{15}{22}\\\frac{y}{8}=\frac{15}{22}\\\frac{z}{6}=\frac{15}{22}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}22x=180\\22y=120\\22z=90\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{90}{11}\\y=\frac{60}{11}\\z=\frac{45}{11}\end{cases}}\)
3xy + y=4-x
<=>9xy+3y=12-3x
<=>9xy+3y+3x+1=13
<=>3y.(3x+1)+(3x+1)=13
<=>(3x+1)(3y+1)=13
<=> *{3x+1=13y+1=13{3x+1=13y+1=13<=>{x=0y=4{x=0y=4(nhận)
*{3x+1=123y+1=1{3x+1=123y+1=1<=>{x=4y=0{x=4y=0(nhận)
*{3x+1=−13y+1=−13{3x+1=−13y+1=−13<=>{x=−23y=−143{x=−23y=−143(loại)
*{3x+1=−133y+1=−1{3x+1=−133y+1=−1<=>{x=−143y=−23{x=−143y=−23(loại)
Vậy x=4 thì y=0 ; x=0 thì y=4