K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2

Do (x - 1)(2x + 1) \(⋮\)2x + 1 

=> 2 \(⋮\)2x + 1

=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}

+) 2x + 1 = 1 => 2x = 0 => x = 0

+) 2x + 1 = -1 => 2x = -2 => x = -1

b) 2x + y + 2xy - 3 = 0

=> 2x(1 + y) + (1 + y) = 4

=> (2x + 1)(1 + y) = 4

=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}

Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1} 

            => 1 + y \(\in\){4; -4}

Lập bảng : 

    2x + 1     1      -1
    1 + y    4     -4
      x   0     -1
      y   3    -5

Vậy ....

c) x2 + 2xy = 0

=> x(x + 2y) = 0

=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy x = y = 0

2 tháng 9 2018

1) +) ta có : \(A=2x^2+9y^2-6xy-6x-12y+2018\)

\(=x^2+9y^2+4-6xy+4x-12y+x^2-10x+25+1989\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)

\(\Rightarrow A_{min}=1989\) khi \(x=5;y=\dfrac{7}{3}\)

câu này mk sửa đề chút nha

+) ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

\(\Rightarrow B_{max}=5\) khi \(y=2;x=3\)

2) a) ta có : \(x^2+y^2=5=\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\)

\(\Leftrightarrow xy=2\)

ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)

b) ta có : \(x^2+y^2=15=\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\)

\(\Leftrightarrow xy=-5\)

ta có : \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=5^3+3\left(-5\right).5=50\)

13 tháng 6 2015

a)x2+y2-4x+4=0

<=>(x-2)2+y2=0

Do \(\left(x-2\right)^2\ge0;y^2\ge0\)

=>(x-2)2=0 và y2=0

<=>x=2 và y=0

b)2x2+y2-2xy+2x-4y+5=0

<=>(x2-2xy+y2-4y+4x+4)+(x2-2x+1)=0

<=>(x-y+2)2+(x-1)2=0

Do \(\left(x-y+2\right)^2\ge0;\left(x-1\right)^2\ge0\)

=>(x-y+2)2=0 và (x-1)2=0

<=>x=1 và y=3

29 tháng 7 2020

Trả lời:

\(2x^2+2xy+y^2=0\)

\(\Leftrightarrow x^2+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow x^2+\left(x+y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy \(\left(x,y\right)=\left(0,0\right)\)

Học tốt 

29 tháng 7 2020

2x2+2xy+y2=0

=>x2+(x2+2xy+y2)=0    (HĐT thứ 1)

=>x2+(x+y)2=0

Vì x2 >= 0 với mọi x

(x+y)2>=0 với mọi x,y

=>x2+ (x+y)2 >=0 với mọi x,y

Dấu "=" xảy ra khi:

<=>x2=0 hoặc (x+y)2=0

<=>x=0 hoặc x+y=0

<=>x=0 hoặc y=0

Vậy ...