Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+4y2-2x+4y+2=0
<=>x2-2x+1+4y2+4y+1=0
<=>(x-1)2+(2y+1)2=0
<=>x-1=0 và 2y+1=0
<=>x=1 và y=-1/2
bai 1. Tìm x,y sao cho
a, (3x2+1)2+2xy+y2+1=0
b,x2+2xy+4y2+4y+y2+1=0
cac ban oi giup mih. minh dang can
a, (3x2+1)2+2xy+y2+1=0
(3x2+1)2+(y+1)2=0 Vì (3x2+1)2 >=0 ; (y+1)2 >=0 với mọi x,ý
=>3x2+1=0 => 3x2=1 => x2=1/3 => x=căn 1/3
y+1=0 => y=-1
b, x2+2xy+4y2+4y+y2+1=0
(x2+2xy+y2) + (4y2+4y+1)=0
(x+y)2 + (2y+1)2=0 Vì (x+y)2 >=0 ; (2y+1)2 >=0 vói mọi x,y
=> 2y+1=0 => y=-1/2
x+y=0 => x-1/2=0 => x=1/2
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
Ta có \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)<=> \(x^3+8y^3=0\)(1)
và \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)<=> \(x^3-8y^3=16\)(2)
Lấy (1) cộng (2)
=> \(2x^3=16\)
<=> \(x^3=8\)
<=> \(x=2\)
Từ (1) <=> \(8y^3=-x^3\)
<=> \(8y^3=-8\)
<=> \(y^3=-1\)
<=> \(y=-1\)
Vậy khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)thì \(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\).
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\Leftrightarrow x^3+8y^3=0\) (1)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\Leftrightarrow x^3-8y^3=16\) (2)
TỪ (1) => \(x^3=-8y^3\) thay vào (2)
=> \(x^3+x^3=16\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
mà \(x^3=-8y^3\Rightarrow y=-1\)
vậy x=2 và y=-1