Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2x - 1| + |1 - y| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
=> 1-y = 0
=> y = 1 - 0 = 0
Vậy x = 1/2 tại y = 0
|x - 3y| + (y+1)2 = 0
=> \(\left(y+1\right)^2=0\rightarrow y+1=0;y=-1\)
Thay vào ta có: |x - 3.(-1) | = 0
=> x - (-3) = 0
=> x =-3
Vây x = -3 tại y = -1
Ta có \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|2x-y\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|3x-5\right|+\left|2x-y\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-5=0\\2x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{10}{3}\end{cases}}\)
Vậy x = 5/3 ; y = 10/3 là giá trị cần tìm
Vì \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|2x-y\right|\ge0\forall x,y\end{cases}}\Rightarrow\left|3x-5\right|+\left|2x-y\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-5=0\\2x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{10}{3}\end{cases}}\)
Vậy x = 5/3 ; y = 10/3
3 + | x + 2 | = 2
| x + 2 | = 2 - 3
| x + 2 | = - 1
\(\Rightarrow\)x + 2 = 1 hoặc - 1
Ta xét 2 trường hợp :
TH1 : x + 2 = 1
x = 1 - 2
x = - 1
TH2 : x + 2 = - 1
x = - 1 - 2
x = - 3
Vậy x \(\in\){ - 1 ; - 3 }
Ta có :
| 2 + 3x | - | 4x - 3 | = 0
\(\Rightarrow\)| 2 + 3x | = | 4x - 3 |
\(\Rightarrow\)2 + 3x = \(\pm\)( 4x - 3 )
Ta xét 2 trường hợp :
Th 1 :
2 + 3x = 4x - 3
3x - 4x = - 3 - 2
- x = - 5
\(\Rightarrow\)x = 5
Th 2 :
2 + 3x = - ( 4x - 3 )
2 + 3x = - 4x + 3
3x + 4x = 3 - 2
7x = 1
\(\Rightarrow\)x = \(\frac{1}{7}\)
Vậy x \(\in\){ 5 ; \(\frac{1}{7}\)}
Xét \(x+y=x.y\left(1\right)\)
Ta có: \(x=x.y-y=y.\left(x-1\right)=>\frac{x}{y}=x-1\)
Lại có \(x+y=\frac{x}{y}\)
\(=>x+y=x-1=\frac{x}{y}=>x+y=x-1=>y=-1\)
Thay y=-1 vào (1),ta được:
\(x-1=x.\left(-1\right)=>x-1=-x=>2x=1=>x=\frac{1}{2}\)
Vậy x=1/2;y=-1
Ta có: \(\left|y+3\right|\ge0\forall y\)
\(\left|2x+y\right|\ge0\forall x,y\)
Do đó: \(\left|y+3\right|+\left|2x+y\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}y+3=0\\2x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-3\end{matrix}\right.\)