\(|\)x-5\(|\)+(y-2)2=0

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

a, Ta thấy : VT >= 0 = VP

Dấu "=" xảy ra <=> x-5=0 và y-2=0 <=> x=5 và y=2

Vậy x=5 và y=2

Tk mk nha

28 tháng 2 2018

Câu a)

Ta có: \(|x-5|\ge0\)

Và \(\left(y-2\right)^2\ge0\)

Mà theo đề bài thì: \(|x-5|+\left(y-2\right)^2=0\)

Do đó: \(\orbr{\begin{cases}x-5=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\y=2\end{cases}}}\)

Câu b)

Lập bảng ra làm nha bn. 

24 tháng 2 2021

a, \(\frac{x+3}{y+4}=\frac{3}{4}\)

\(< =>\frac{x+3}{3}=\frac{y+4}{4}< =>\frac{x}{3}+1=\frac{y}{4}+1\)

\(< =>\frac{x}{3}=\frac{y}{4}\)

Theo tinh chat cua day ti so bang nhau ta co 

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{21}{7}=3\)

\(=>\hept{\begin{cases}x=3.3=9\\y=4.3=12\end{cases}}\)

24 tháng 2 2021

a)

     \(\frac{x+3}{y+4}=\frac{3}{4}\)

    \(\Leftrightarrow\frac{x+3}{3}=\frac{y+4}{4}\)

       Áp dụng tính chất của dãy tỉ số bằng nhau :

               \(\frac{x+3}{3}=\frac{y+4}{4}=\frac{x+y+3+4}{3+4}=\frac{28}{7}=4\)

        Do đó

            \(\frac{x+3}{3}=4\Rightarrow x+3=12\Rightarrow x=9\)

              \(\frac{y+4}{4}=4=>y+4=16\Rightarrow y=12\)

22 tháng 1 2018

làm như ép người ta quá vậy, lẽ ko ai trả lời cho cậu đâu

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

11 tháng 3 2020

a)Ta có : \(A=\frac{10^{2014}+5}{10^{2014}-2}\)

=> \(A-1=\frac{10^{2014}+5-\left(10^{2014}-2\right)}{10^{2014}-2}=\frac{7}{10^{2014}-2}\)

Lại có : \(B=\frac{10^{2014}}{10^{2014}-7}\)

=> B - 1 = \(\frac{10^{2014}-\left(10^{2014}-7\right)}{10^{2014}-7}=\frac{7}{10^{2014}-7}\)

Vì : \(\frac{7}{10^{2014}-2}< \frac{7}{10^{2014}-7}\)

nên A - 1 < B - 1

=> A < B

b) Ta có : 4x + 1295 = 6y

=> 6y - 4x = 1295

Với x ; y \(\inℕ\) 

=> 4x ; 6y \(\inℕ\)

mà 6y - 4x = 1295 (1)

=> 6y > 4x ; 6y > 1295

Vì 6y > 1295

=> \(y\ge4\)

Ta xét các trường hợp

Nếu \(x;y>0\)

=> 6y ; 4x chẵn

=> 6y - 4x chẵn (loại vì 1295 lẻ)

Nếu x = 0 ; y > 0

Khi đó (1) <=> 6y - 1 = 1295

=> 6y = 1296

=> 6y = 64

=> y = 4 (tm) 

Vậy x = 0 ; y = 4

9 tháng 1 2019

a)

(x+2)2+(y-3)2+(z-2)2=0

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\\\left(z-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=3\\z=2\end{cases}}}\)

Vậy...

9 tháng 1 2019

b)

(x-3).y-x=5

xy - 3x - x = 5

xy - 4x = 5

x(y - 4) = 5 = 1.5 = (-1).(-5)

TH1:

\(\Rightarrow\hept{\begin{cases}x=1\\y-4=5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)

TH2:

\(\Rightarrow\hept{\begin{cases}x=5\\y-4=1\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=5\end{cases}}}\)

TH3:

\(\Rightarrow\hept{\begin{cases}x=-1\\y-4=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)

TH4:

\(\Rightarrow\hept{\begin{cases}x=-5\\y-4=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}}\)

Vậy...

26 tháng 8 2019

khó quá bn ơi

26 tháng 8 2019

2b,Chương I : Ôn tập và bổ túc về số tự nhiên

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)