Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có :
\(\dfrac{x}{19}=\dfrac{y}{21}\) \(\Leftrightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{38}=2\Leftrightarrow x=38\\\dfrac{y}{21}=2\Leftrightarrow y=42\end{matrix}\right.\)
Vậy ..
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\Rightarrow x^2=64\Rightarrow x=\pm8\)
Vậy .....
a, \(\dfrac{x}{y}=\dfrac{17}{3}\&x+y=-60\)
Từ \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{17}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-51\\y=-9\end{matrix}\right.\)
b, \(\dfrac{x}{19}=\dfrac{y}{21}\&2x-y=34\)
\(\dfrac{x}{19}=\dfrac{y}{21}\Leftrightarrow\dfrac{2x}{2.19}=\dfrac{y}{21}\Leftrightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x}{38}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
c, \(\dfrac{x^2}{9}=\dfrac{y^2}{16}\&x^2+y^2=100\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\\\dfrac{y^2}{16}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
Các cặp (x;y) tương ứng là: \(\left(6;8\right)\&\left(-6;-8\right)\)
a/ cách 1: x/y = 17/3
=> \(\dfrac{x}{17}=\dfrac{y}{3}\) vaf x + y = -60
A/dung tinh chat cua day ti so = nhau co:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=-\dfrac{60}{20}=-3\)
=> \(\left\{{}\begin{matrix}x=-3\cdot17=-51\\y=-3\cdot3=-9\end{matrix}\right.\)
Cách 2: đặt: \(\dfrac{x}{17}=\dfrac{y}{3}=k\Rightarrow x=17k;y=3k\)
=> x + y = 17k + 3k = 20k = -60
=> k = -3
=> x = -3 . 17 = -51; y = -3 . 3 = 9
vậy.......
b/ c1: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34
A/dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
c2: đặt \(\dfrac{x}{19}=\dfrac{y}{21}=k\Rightarrow x=19k;y=21k\)
=> 2x -y = 2 . 19k - 21k = 38k - 21k = 17k = 34
=> k = 2
=> x = 2 . 19 = 38; y = 2 . 21 = 42
Vậy.........
c/ Cách 1: a/dụng t/c của dãy tỉ số = nhau:
\(\dfrac{X^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4\cdot9=36\\y^2=4\cdot16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
vậy .....
c2: đặt: \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=k\Rightarrow x^2=9k;y^2=16k\)
=> x2 + y2 = 9k + 16k = 25k = 100
=> k = 4
=> x2 = 36 ; y2 = 64
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
vậy.......
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=13.2=26\end{matrix}\right.\)
Vật \(x=14;y=26\)
b) (Chỗ này bạn viết nhầm thì phải)
Ta có:
\(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
và \(x-y=-16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)
Vậy \(x=12;y=28\)
c) Ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}\)
và \(2x-y=34\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=38.2=76\Rightarrow x=38\\y=21.2=42\end{matrix}\right.\)
Vậy \(x=38;y=42\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9.4=36=6^2=\left(-6\right)^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\y^2=16.4=64=8^2=\left(-8\right)^2\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x:y\right)\in\left\{\left(6;8\right);\left(6;-8\right);\left(-6;8\right);\left(-6;-8\right)\right\}\)
Cả 4 cái có 1 câu huyền thoại:"Áp dụng tính chất dãy tỉ số = nhau ta có" nên mk nói cho cả 4 lun :v
a) \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
c) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
c) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\Rightarrow x=\pm6\\y^2=4.16=64\Rightarrow y=\pm8\end{matrix}\right.\)
\(\)
a,\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
=> x = 21; y = 9
b, \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> x = 38; y = 42
a) \(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{3}=\frac{5x-2y}{5.7-2.3}=\frac{87}{29}=3\)
=> x = 7 x 3 = 21 ; y = 3x3 =9
b) \(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)
=> \(x=19.2=38\) ; \(y=21.2=42\)