Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A=\left[\frac{1}{3}+\frac{3}{x.\left(x-3\right)}\right]:\left[\frac{x^2}{3.\left(9-x^2\right)}+\frac{1}{x+3}\right]\)
\(=\left[\frac{x.\left(x-3\right)}{3.x.\left(x-3\right)}+\frac{3.3}{x\left(x-3\right).3}\right]:\left[\frac{x^2}{3.\left(3-x\right)\left(3+x\right)}+\frac{1}{x+3}\right]\)
\(=\left[\frac{x^2-3x+9}{3x.\left(x-3\right)}\right]:\left[\frac{x^2}{3.\left(3-x\right)\left(3+x\right)}+\frac{\left(3-x\right).3}{\left(x+3\right).\left(3-x\right).3}\right]\)
\(=\frac{x^2-3x+9}{3x.\left(x-3\right)}:\left[\frac{x^2+9-3x}{3.\left(3-x\right)\left(3+x\right)}\right]\)
\(=\frac{x^2-3x+9}{3x.\left(x-3\right)}.\frac{3.\left(3-x\right)\left(3+x\right)}{x^2-3x+9}\)
\(=\frac{-\left(x-3\right)\left(3+x\right)}{x-3}=-\left(3+x\right)\)
b. Để A < -1 thì:
-(3+x) < -1
=> -3 - x < -1
=> x < -3 - (-1) = -2
Vậy x < -2 thì A < -1.
\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !
\(Q=\frac{x^2+2x+1}{x+2}=\frac{\left(x+1\right)^2}{x+2}\ge0\forall x>-2\) có GTNN là 0
Bài \(1.\)
\(x^4+2010x^2+2009x+2010=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
Bài \(2.\)
\(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow\) \(x^2-25+9=y^2+6y+9\)
\(\Leftrightarrow\) \(x^2-16=\left(y+3\right)^2\)
\(\Leftrightarrow\) \(x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\) \(\left(x-y-3\right)\left(x+y+3\right)=16\)
Bạn xét từng trường hợp nhóe!
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
Bn giải câu của mih trc đc k ?
Tìm x: 4x^2(x-5)-(5-x)^2 =0 Mình cảm ơn