Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=x^2 +xy -xz -zy tai x = 6,5 ;y=3,5;z=37,5
A = -310
,B =xy-4y-5x+20 tai x=14;y=5,5
B = 13,5
Bài 1:
\(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x = 1 hoặc x = -1
Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)
\(\Rightarrowđpcm\)
x3 - 2x2 + 6x = 12
x3 - 2x2 + 6x - 12 = 0
x2(x - 2) + 6(x - 2)=0
(x - 2)(x2 + 6) = 0
\(\Leftrightarrow \begin{bmatrix} x - 2 = 0 & & \\ x^{2} + 6 = 0& & \end{bmatrix}\) bỏ dấu ngoặc bên phải nha pn
\(\Leftrightarrow \begin{bmatrix} x = 2 & & \\ x^{2} = - 6 & & \end{bmatrix}\) không tìm được giá trị của x (pn ghi cái này kế pn chỗ x2 = - 6 nhé
Vậy x = 2
\(x^3-2x^2+6x=12\)
\(\Rightarrow\) \(x^3-2x^2+6x-12=0\)
\(\Rightarrow x^2\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
Vậy $x=2$
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4.5\right)=3.5\)
\(=>2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4.5-3.5=0\)
\(=>-6x-8=0\)
\(=>-2\left(3x+4\right)=0\)
\(=>3x+4=0\)(vì \(-2\ne0\))
\(=>x=\frac{-4}{3}\)
\(x^2-x-1=x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
Khai căn hai vế ra ta được
\(x-\frac{1}{2}=\frac{\sqrt{5}}{2}\)
\(\Leftrightarrow x=\frac{\sqrt{5}}{2}+\frac{1}{2}\)
\(\Leftrightarrow x=1,618033989\)
Ta có: x^2 - 2x - 3 = 0
x^2 - 2x + 1 -4 =0
(x - 1)^2 - 4 = 0
(x-1-4)(x-1+4) = 0
(x-5)(x+3)
=> x-5= 0 hoặc x+3=0
=> x=5 hoặc x=-3
OK
\(x^2-2x\)\(-3=0\)
\(x^2-2x-3\)\(=0\)
\(x^2-2x=0+3\)
\(x^2-2x=3\)
\(x^2-x=3:2\)
\(x^2-x=1,5\)
\(x^2\)không bao giờ = số thập phân
=> X thuộc rỗng