Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{8}{1.9}+\frac{8}{9.17}+\frac{8}{17.25}+...+\frac{8}{49.57}\right)+2\left(x-1\right)=\frac{2x+7}{3}+\frac{5x-8}{4}\)
\(\Leftrightarrow1-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+\frac{1}{17}-\frac{1}{25}+....+\frac{1}{49}-\frac{1}{57}+2x-2=\frac{8x+28+15x-24}{12}\)
\(\Leftrightarrow1-\frac{1}{57}+2x-2=\frac{23x+4}{12}\)
\(\Leftrightarrow2x-\frac{58}{57}=\frac{23x+4}{12}\)
\(\Leftrightarrow24x-\frac{232}{19}=23x+4\)
\(\Leftrightarrow x=\frac{308}{19}\)
1/
\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)
\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
Phương trình đã cho tương đương:
\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
\(\Leftrightarrow503x=2012\)
\(\Leftrightarrow x=4\)
2/
\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)
\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)
3/
Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(=2.\frac{n+1}{n+2}<2\) (do \(\frac{n+1}{n+2}=1-\frac{1}{n+2}<1\))
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
thấy chưa huj nãy nói sai mà
Ta có: \(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}=1-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}=1-\frac{1}{57}=\frac{56}{57}\)
Vậy: 56/57 + 58/57 + 2x - 2 = 2x + 7/3 + 5x - 8/4
2 + 2x - 2 = 2x + 7/3 + 5x - 8/4
2x = 2x + 7/3 + 5x - 8/4
=> 7/3 + 5x - 8/4 = 0
1/3 + 5x = 0
=> 5x = -1/3
=> x = -1/3 : 5=-1/15