Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
\(\frac{\left(\sqrt{x^2+15}-4\right).\left(\sqrt{x^2+15}+4\right)}{\sqrt{x^2+15}+4}=3x-3+\frac{\left(\sqrt{x^2+8}-3\right)\left(\sqrt{x^2+8}+3\right)}{\sqrt{x^2+8}+3}\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+8}+3}\)
\(\Leftrightarrow\left(x-1\right)\left(3+\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+15}+4}\right)=0\)
\(\Leftrightarrow3+\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+15}+4}=0\)hoặc x=1
Ta có: \(\sqrt{x^2+15}-\sqrt{x^2+8}=3x-2\)
Thấy: VT>0 => VP>0 => x>2/3
Xét \(3+\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+15}+4}=0\)(1)
Ta thấy: với x>2/3 thì VT luôn dương => (1) vô lý
Vậy S={1}
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow x^2-8=\left(x+3\right)\frac{\left(\sqrt{x^2+1}-3\right)\left(\sqrt{x^2+1}+3\right)}{\sqrt{x^2+1}+3}\)
\(\Leftrightarrow x^2-8=\left(x+3\right)\frac{x^2-8}{\sqrt{x^2+1}+3}\)
\(\Leftrightarrow\left(x^2-8\right)\left(1-\frac{x+3}{\sqrt{x^2+1}+3}\right)=0\)
\(\Leftrightarrow\left(x^2-8\right)\frac{\sqrt{x^2+1}-x}{\sqrt{x^2+1}+3}=0\)
Có \(\sqrt{x^2+1}-x>0\)
\(\Leftrightarrow\frac{\sqrt{x^2+1}-x}{\sqrt{x^2+1}+3}>0\)
\(\Rightarrow x=\pm2\sqrt{2}\)
Vậy...
a) ĐKXĐ: 1\(\le x\le7\)
phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)
Vậy S={5,4} là tập nghiệm của phương trình
b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)
=> z^2-y^2=x^2-3x+2
pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0
đến đó tự làm tự đặt dkxd
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
anh em giúp mình bài này với
pt đặt ẩn phụ đó