Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu \(\frac{1}{2}x\ge0\Rightarrow x\ge0\) thì \(\left|\frac{1}{2}x\right|=3-2x\Rightarrow\frac{1}{2}x=3-2x\Rightarrow\frac{5}{2}x=3\Rightarrow x=\frac{6}{5}\) (nhận)
Nếu \(\frac{1}{2}x< 0\Rightarrow x< 0\) thì \(\left|\frac{1}{2}x\right|=3-2x\Rightarrow-\frac{1}{2}x=3-2x\Rightarrow\frac{3}{2}x=3\Rightarrow x=2\) (loại)
Vậy x = 6/5
b) Nếu \(x-1\ge0\Rightarrow x\ge1\) thì \(\left|x-1\right|=3x+2\Rightarrow x-1=3x+2\Rightarrow-2x=3\Rightarrow x=\frac{-2}{3}\) (loại)
Nếu \(x-1< 0\Rightarrow x< 1\) thì \(\left|x-1\right|=3x+2\Rightarrow-\left(x-1\right)=3x+2\Rightarrow-x+1=3x+2\Rightarrow-4x=1\Rightarrow x=\frac{-1}{4}\) (nhận)
Vậy x = -1/4
a)
5.(12-x)-20=30
⇒60-5x-20=30
⇒-5x=30+20-60
⇒-5x=-10
⇒x=2
b)(17x - 25 ) : 8 + 65 = 92
(17x - 25 ) : 8 + 65 = 81
17x - 25 = 16 x 8 = 128
17x = 128+25=153
x= 153:17 =9
c)
x=23
Giải thích các bước giải:
3x – 10 = 2x + 13
3x-2x=13+10
x=23
d)4(2x+7)-3(3x-2)=24
4.2x+4.7-3.3x+3.2=24
8x+28-9x+6=24
8x-9x=24-28-6=-10
=>(-1)x=-10
x=-10:(-1)
x=10
a. \(5\cdot\left(12-x\right)-20=30\Leftrightarrow5\left(12-x\right)=50\)
\(\Leftrightarrow12-x=50:5=10\)
\(\Leftrightarrow x=12-10=2\)
b. \(\left(17x-25\right):8+65=9^2\)
\(\Leftrightarrow\left(17x-25\right):8=81-65=16\)
\(\Leftrightarrow17x-25=16:8=2\)
\(\Leftrightarrow17x=2+25=27\Leftrightarrow x=\frac{27}{17}\)
c. \(3x-10=2x+13\)
\(\Leftrightarrow3x-2x=10+13\)
\(\Leftrightarrow x=23\)
d. \(4\cdot\left(2x+7\right)-3\cdot\left(3x-2\right)=24\)
\(\Leftrightarrow8x+28-9x+6=24\)
\(\Leftrightarrow34-x=24\Leftrightarrow x=10\)
a) [ 3x-1] + 4x - 3 = 7
3x - 1 + 4x = 7 + 3 = 10
( 3 + 4 )x - 1 =10
7x - 1 = 10
7x=11
x=11/7
Câu tiếp theo làm tương tự nhé =))
) [ 3x-1] + 4x - 3 = 7
3x - 1 + 4x = 7 + 3 = 10
( 3 + 4 )x - 1 =10
7x - 1 = 10
7x=11
x=11/7
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...