Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)x^3 - 6x^2 +11x-6=0
<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0
<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0
<=>(x-1).(x^2 - 5x + 6)=0
<=>(x - 1).(x^2 - 2x - 3x + 6)=0
<=>(x - 1).[(x(x-2)-3(x-2)]=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0hoac x-2=0 hoac x-3=0
<=>x=1hoac x=2 hoac x=3
\(a,x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(b,x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)
\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)
\(\Leftrightarrow3x^2-10x-8=0\)
\(\Leftrightarrow3x^2-12x+2x-8=0\)
\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)
Phần d tương tự
Câu a :
\(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-4^2\right)=0\)
\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)
\(\Rightarrow\) \(x=0\)
\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
Câu b :
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Rightarrow x=0\)
\(\left(x-2\right)=0\Rightarrow x=2\)
\(x^2+10=0\) \(\Rightarrow\) x ( loại )
a) 2x (x-5) -(x2-10x +25)=0
\(\Leftrightarrow\)2x(x-5)-(x-5)2=0
\(\Leftrightarrow\)(x-5)(2x-x+5)=0
\(\Leftrightarrow\)(x-5)(x+5)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
b) x2 - 9 +3x(x+3) = 0
\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0
\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0
\(\Leftrightarrow\)(x+3)(x-3+3x)=0
\(\Leftrightarrow\)(x+3)(4x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)
c) x3 - 16x = 0
\(\Leftrightarrow\)x(x2-16)=0
\(\Leftrightarrow\)x(x-4)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) (2x+3)(x-2) - (x2 -4x+4) = 0
\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0
\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0
\(\Leftrightarrow\)(x-2)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
e) 9x2 -(x2 -2x +1)=0
\(\Leftrightarrow\)(3x)2-(x-1)2=0
\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0
\(\Leftrightarrow\)(2x+1)(4x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
f)x3-4x2 -9x +36 = 0
\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0
\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0
\(\Leftrightarrow\)(x-4)(x2-9)=0
\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
g) 3x - 6 = (x-1).(x-2)
\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)
\(\Leftrightarrow\)x-1=3
\(\Leftrightarrow\)x=4
i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)
k) x2 -1 = (x-1).(2x+3)
\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)
\(\Leftrightarrow\)x+1=2x+3
\(\Leftrightarrow\)x-2x=3-1
\(\Leftrightarrow\)-x=2
\(\Leftrightarrow\)x=-2
l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6
\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6
\(\Leftrightarrow\)6x-8=6
\(\Leftrightarrow\)6x=14
\(\Leftrightarrow\)x=\(\frac{7}{3}\)
b) \(\left(x-7\right)\left(x-4\right)\left(x-5\right)\left(x-2\right)=72\)
\(\Leftrightarrow\) \(\left[\left(x-7\right)\left(x-2\right)\right].\left[\left(x-4\right)\left(x-5\right)\right]\) \(=72\)
\(\Leftrightarrow\) (\(x^2-9x+14\))(\(x^2-9x+20\)) \(=72\) (1)
Đặt \(x^2-9x+17=y\) .Khi đó (1) trở thành:
\(\left(y-3\right)\left(y+3\right)=72\)
\(\Leftrightarrow\) \(y^2-9=72\)
\(\Leftrightarrow\) \(y^2=81\) \(\Leftrightarrow\) \(y\) ∈ \(\left\{9;-9\right\}\)
+)Nếu \(y=9\) \(\Rightarrow\) \(x^2-9x+17=9\)
\(\Leftrightarrow\) \(x^2-9x-8=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\frac{9+\sqrt{113}}{2}\\x=\frac{9-\sqrt{113}}{2}\end{matrix}\right.\)
+)Nếu \(y=-9\) \(\Rightarrow x^2-9x+17=-9\)
\(\Leftrightarrow\) \(x^2-9x+26=0\)
\(\Leftrightarrow\)( \(x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2\)) \(+\frac{23}{4}\)\(=0\)
\(\Leftrightarrow\) \(\left(x-\frac{9}{2}\right)^2\)\(=-\frac{23}{4}\)( Vô lí,vì \(\left(x-\frac{9}{2}\right)^2\) ≥0)
Vậy phương trình có tập nghiệm S=\(\left\{\left(\frac{9+\sqrt{113}}{2}\right);\left(\frac{9-\sqrt{113}}{2}\right)\right\}\)
a: \(\Leftrightarrow\left(2x-3\right)^2-5x\left(2x-3\right)=0\)
=>(2x-3)(-3x-3)=0
=>x=-1 hoặc x=3/2
b: \(\Leftrightarrow49\left(x^2-10x+25\right)-8x-4=0\)
=>\(49x^2-498x+1221=0\)
=>\(x\in\left\{6.03;4.13\right\}\)
c: \(\Leftrightarrow\left(x+6\right)\left(x+6-8\right)=0\)
=>(x-2)(x+6)=0
=>x=2 hoặc x=-6
d: =>\(\left(16x+24\right)^2-\left(x-6\right)^2=0\)
=>(16x+24+x-6)(16x+24-x+6)=0
=>(17x+18)(15x+30)=0
=>x=-2 hoặc x=-18/17
\(x^3-2x^2+x=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2=0\)
\(\Rightarrow x=0;x=1\)
\(\left(x+1\right)^3-x^3-1=0\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x^3+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1\right)-\left(x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\cdot3x=0\)
\(\Leftrightarrow x=0;x=-1\)