Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Vì |x(x-4)|\(\ge\)0 nên x\(\ge\)0
+)Nếu x=0
=>Vế trái: |x(x-4)|=|0(0-4)|=|0.(-4)|=|0|=0 (chọn)
+)Nếu x>0
=>|x(x-4)|=x
<=>x|x-4|=x
=>|x-4|=x:x=1
=>x-4=-1 hoặc x-4=1
TH1:Nếu x-4=-1
=>x=3
TH2:Nếu x-4=1
=>x=5
Vậy x\(\in\){0;3;5}
Answer:
\(\left|x-1\right|+\left|x-4\right|=3x\)
Trường hợp 1: \(x>1\)
\(1-x+4-x=3x\)
\(\Rightarrow5-2x=3x\)
\(\Rightarrow5=5x\)
\(\Rightarrow x=1\) (Loại)
Trường hợp 2: \(1\le x\le4\)
\(x-1+4-x=3x\)
\(\Rightarrow3=3x\)
\(\Rightarrow x=1\) (Thoả mãn)
Trường hợp 3: \(x>4\)
\(x-1+x-4=3x\)
\(\Rightarrow2x+5=3x\)
\(\Rightarrow2x-3x=5\)
\(\Rightarrow x=-5\) (Loại)
\(\left|x+1\right|+\left|x+4\right|=3x\)
Có: \(\hept{\begin{cases}\left|x+1\right|\ge0\forall x\inℝ\\\left|x+4\right|\ge0\forall x\inℝ\end{cases}}\)
\(\Rightarrow3x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+4=3x\)
\(\Rightarrow2x+5=3x\)
\(\Rightarrow x=5\)
\(\left|x\left(x-4\right)\right|=x\)
\(\Rightarrow\orbr{\begin{cases}x\left(x-4\right)=x\\x\left(x-4\right)=-x\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-4x=x\\x^2-4x=-x\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-5x=0\\x^2-3x=0\end{cases}}\)
(Nếu ý này bạn trình bàn trong vở thì làm thành một ngoặc vuông to, trong đó chứa hai ngoặc vuông nhỏ nhé.)
Trường hợp 1: \(\orbr{\begin{cases}x=5\text{(Thoả mãn)}\\x=0\text{(Thoả mãn)}\end{cases}}\)
Trường hợp 2: \(\orbr{\begin{cases}x=3\text{(Thoả mãn)}\\x=0\text{(Loại)}\end{cases}}\)
Vậy \(x=5;x=0;x=3\)
Ta có: |x - 10| + 10 = x
=> |x - 10| = x - 10
=> x - 10 = x - 10
x - 10 = -(x - 10)
=> x - 10 = 0
=> x = 10 + 0
=> x = 10
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
a) \(2x\left(3x+1\right)+3x\left(4-2x\right)=7\)
\(\Rightarrow6x^2+2x+12x-6x^2=7\)
\(\Rightarrow14x=7\Rightarrow x=\frac{1}{2}\)
b) \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow-20x-36x-30x+6x=-240-84-72-84\)
\(-80x=-480\)
x = 6
c) \(\left(3x+2\right).\left(2x+9\right)-\left(x+2\right).\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)
\(\Rightarrow6x^2+4x+27x+18-6x^2-12x-x-2=x+1-x+6\) ( chỗ này bn tự phân tích ik nha, mk chỉ đưa ra kp sau khi phân tích thôi, ko thì viết ra dài lắm)
\(\Rightarrow18x+16=7\)
18x = -9
x = -2
18x =
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
a) |x - 1| + |x - 4| = 3x (1)
+) Nếu x < 1 => x - 1 < 0; x - 4 < 0 => |x - 1| = 1 - x; |x - 4| = 4 - x
Khi đó (1) trở thành:
1 - x + 4 - x = 3x
=> 5 - 2x = 3x
=> 5 = 3x + 2x
=> 5 = 5x
=> x = 1 (không thoả mãn điều kiện x < 1)
+) Nếu 1 <= x <= 4 => x - 1 >= 0; x - 4 <= 0
=> |x - 1| = x - 1; |x - 4| = 4 - x
Khi đó (1) trở thành: x - 1 + 4 - x = 3x => 3 = 3x
=> x = 1 (thoả mãn)
b)|x+3| ≥ 0;|x+1| ≥ 0
=>|x+3|+|x+1| ≥ 0
Để |x+3|+|x+1|=3x
thì 3x ≥ 0⇒x ≥ 0
=>x+3 > 0 và x+5 > 0
Ta có: x+3+x+1=3x
=>(x+x)+(3+1)=3x
=>2x+4=3x
=>3x-2x=4
=>x=4
Vậy x=4 thỏa mãn
c) lx(x-4)|=x
⇒ x (x − 4) = ±x
Nếu x (x − 4) = x
⇒ x2 − 4x = x
⇒ x2 − 5x = 0
⇒ x (x − 5) = 0
⇒ x = 5
x = 0
Nếu x (x − 4) = −x
⇒ x2 − 4x = −x
⇒ x2 − 3x = 0
⇒ x (x − 3) = 0
⇒ x = 0
x = 3
Vậy x=0 hoặc x=3 hoặc x=5
mỏi tay quá
câu bạn làm sai đề rùi bạn ơi