Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(3x-1\right)^2-\left(x+7\right)^2=0\)
\(\left(3x-1+x+7\right)\left(3x-1-x-7\right)=0\)
\(\left(4x+6\right)\left(2x-8\right)=0\)
Nên : 4x + 6 = 0 hoặc 2x - 8 = 0
4x = -6 hoặc 2x = 8
x = \(\frac{-3}{2}\) hoặc x = 4
Vậy x = \(\frac{-3}{2}\) hoặc x = 4
a) 5x2- 4. ( x2-2x + 1 ) - 5 = 0
b) ( x2- 9 ) 2 - (x-3)2 = 0
c) x3- 3x + 2 = 0
giúp mik vs ~ mai kt~
a, \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Rightarrow5x^2-4x^2+8x-4-5=0\)
\(\Rightarrow x^2-x+9x-9=0\)
\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
b, \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Rightarrow\left(x^2-9-x+3\right)\left(x^2-9+x-3\right)=0\)
\(\Rightarrow\left(x^2-x-6\right)\left(x^2+x-12\right)=0\)
\(\Rightarrow\left(x^2-3x+2x-6\right)\left(x^2+4x-3x-12\right)=0\)
\(\Rightarrow\left[x\left(x-3\right)+2\left(x-3\right)\right]\left[x\left(x+4\right)-3\left(x+4\right)\right]=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)\left(x+4\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
c, \(x^3-3x+2=0\)
\(\Rightarrow x^3+2x^2-2x^2-4x+x+2=0\)
\(\Rightarrow x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x^2-2x+1\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
a, 5x2−4(x2−2x+1)−5=05x2−4(x2−2x+1)−5=0
⇒5x2−4x2+8x−4−5=0⇒5x2−4x2+8x−4−5=0
⇒x2−x+9x−9=0⇒x2−x+9x−9=0
⇒x(x−1)+9(x−1)=0⇒x(x−1)+9(x−1)=0
⇒(x−1)(x+9)=0⇒(x−1)(x+9)=0
⇒[x−1=0x+9=0⇒[x=1x=−9⇒[x−1=0x+9=0⇒[x=1x=−9
b, (x2−9)2−(x−3)2=0(x2−9)2−(x−3)2=0
⇒(x2−9−x+3)(x2−9+x−3)=0⇒(x2−9−x+3)(x2−9+x−3)=0
⇒(x2−x−6)(x2+x−12)=0⇒(x2−x−6)(x2+x−12)=0
⇒(x2−3x+2x−6)(x2+4x−3x−12)=0⇒(x2−3x+2x−6)(x2+4x−3x−12)=0
⇒[x(x−3)+2(x−3)][x(x+4)−3(x+4)]=0⇒[x(x−3)+2(x−3)][x(x+4)−3(x+4)]=0
⇒(x−3)(x+2)(x+4)(x−3)=0⇒(x−3)(x+2)(x+4)(x−3)=0
⇒⎡⎢⎣x−3=0x+2=0x+4=0⇒⎡⎢⎣x=3x=−2x=−4⇒[x−3=0x+2=0x+4=0⇒[x=3x=−2x=−4
c, x3−3x+2=0x3−3x+2=0
⇒x3+2x2−2x2−4x+x+2=0⇒x3+2x2−2x2−4x+x+2=0
⇒x2(x+2)−2x(x+2)+(x+2)=0⇒x2(x+2)−2x(x+2)+(x+2)=0
⇒(x+2)(x2−2x+1)=0⇒(x+2)(x2−2x+1)=0
⇒(x+2)(x−1)2=0⇒(x+2)(x−1)2=0
⇒[x+2=0(x−1)2=0⇒[x=−2x=1⇒[x+2=0(x−1)2=0⇒[x=−2x=1
a, 5x(x-3)(x+3)-(2x-3)2 -5(x+2)3 +3x(x+2)=1
<=> 5x(x2 -9) -(4x2 -12x +9) -5(x3 +6x2 +12x+8) +3x2 6x=1
<=> 5x3 -45x-4x2 +12x-9-5x3 -30x2 -60x-40+3x2 +6x=1
<=> -31x2 -87x-50=0
................................................................................................
................................................................................................
Từ đó, bn tự tách ra nha...
=> tìm được 2 n0 : S={ -25/31; -2 }
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
a) bạn nhóm 2 cái cuối thành 1 nhóm, 2 cái ở giữa thành 1 nhóm, rồi đặt ẩn phụ là ra
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(t-4\right)\left(t+6\right)=0\)
đến đây bn thay trở lại rồi tìm nghiệm nhé
Ta có : 5(x2 - 3x + 1) + x(1 - 5x) = x - 2
=> 5x2 - 15x + 5 + x - 5x2 = x - 2
=> -14x + 5 = x - 2
=> -15x = -7
=> x = 7/15
Vậy x = 7/15
\(5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)
\(\Leftrightarrow5x^2-15x+5+x-5x^2-x=-2\)
\(\Leftrightarrow\left(5x^2-5x^2\right)+\left(-15x+x-x\right)=-2-5\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=\frac{7}{15}\)