Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)
Trả lời:
\(\left|2x+1\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left|2x+1\right|-\left|2x-3\right|=0\)
Vì \(\left|2x+1\right|\ge0\)với \(\forall x\)
\(\left|2x-3\right|\ge0\)với \(\forall x\)
Do đó: \(\left|2x+1\right|-\left|2x-3\right|\ge0\)với \(\forall x\)
Mà\(\left|2x+1\right|-\left|2x-3\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=-1\\2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
Hok tốt!
Vuong Dong Yet
Vì |2x-3| - |3x+2| = 0
Suy ra |2x-3|=|3x+2|
Ta có 2 trường hợp:
+)Trường hợp 1: Nếu 2x-3=3x+2
2x-3=3x+2
-3-2=3x-2x
-2=x
+)Trường hợp 2: Nếu 2x-3=-(3x+2)
2x-3=-(3x+2)
2x-3=-3x-2
2x+3x=3-2
5x=1
x=1/5
Vậy x thuộc {-1,1/5}
(2x - 3) - ( 3x + 2) = 0
tính trong ngoặc trước ngoài ngoặc sau
2x - 3 ko phải là 2 nhân âm 3.
2x = 2 nhân x
( 2x - 3) - ( 3x + 2) = 0 có nghĩa là 2x -3 = 3x + 2
còn đâu tự giải nhé
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2
a) |x - 1,7| = 2,3
Xét 2 trường hợp:
TH1: x - 1,7 = -2,3
x = -2,3 +1,7
x = -0,6
TH2: x - 1,7 = 2,3
x = 2,3 + 1,7
x = 4
Vậy: Tự kl :<
Bài làm:
a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
+ Nếu x = 6
\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)
+ Nếu x = 4
\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)
b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{4}{3}\)
Thay vào ta được:
\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)
\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)
\(\Leftrightarrow14y=-4\)
\(\Rightarrow y=-\frac{2}{7}\)
Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)
a: P(x)=2x^5-2x^5+4x^4-3x^4+5=x^4+5
Q(x)=-5x^4+2x^4-x^3+3x^2-10x+2
=-3x^4-x^3+3x^2-10x+2
b: P(x)+Q(x)
=x^4+5-3x^4-x^3+3x^2-10x+2
=-2x^4-x^3+3x^2-10x+7
Q(x)-P(x)
=-3x^4-x^3+3x^2-10x+2-x^4-5
=-4x^4-x^3+3x^2-10x-3
P(x)-Q(x)=-(Q(x)-P(x))
=4x^4+x^3-3x^2+10x+3
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3>=-5\\2x-3< =5\end{matrix}\right.\Leftrightarrow-1< =x< =4\)