Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
=>x-1;x+5 trái dấu mọi x
Ta có:x-1-(x+5)=x-1-x-5=-6<0
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+5>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-5\end{cases}}\)
=> -5<x<1=>x\(\in\){-4;-3;-2;-1;0}
muốn biểu thức <0 thì =>x ={bé hơn 1 lớn hơn -5}
muốn biểu thức >0 thì => x={bé hơn 4 lớn hơn -3}
muốn biểu thức >0 thì => x={lớn hơn 3.......}
muốn biểu thức >0 thì => x={lớn hơn 3...}
Mk làm theo thức tự của bn sắp xếp đừng lầm nha nhớ k nữa nha
Dễ mà,e cứ chia 2 TH là đc
Vd:<0 thì chia ra x+2>0 hoac x<0 và nguoc lai roi tìm x
a) \(\frac{x}{7}=\frac{9}{y}\left(x>y\right)\)
\(\Rightarrow x.y=9.7\)
\(\Rightarrow x.y=63\)
Mà \(63=1.63=9.7=3.21=\left(-1\right)\left(-63\right)=\left(-9\right)\left(-7\right)=\left(-3\right)\left(-21\right)\)
MÀ \(x>y\)
Vậy các cặp số (x,y) thõa mãn là:
\(\left(63,1\right);\left(9,7\right);\left(21,3\right);\left(-1,-63\right);\left(-7,-9\right);\left(-3,-21\right)\)
b) bạn ghi lộn x<0>y rồi
mk sửa thành x<0<y
Hay nói cách khác là x là số âm, y là số dương
\(\frac{-2}{x}=\frac{y}{5}\)
\(\Rightarrow x.y=-10\)
Mà \(-10=-1.10=-2.5=-5.2=-10.1\)
mà x là số âm, y là số dương
Vậy các cặp số(x,y) thõa mãn là:
\(\left(-1,10\right);\left(-2,5\right);\left(-5,2\right);\left(-10,1\right)\)
c) \(\frac{x}{3}=\frac{27}{x}\)
\(\Rightarrow x.x=27.3\)
\(\Rightarrow x^2=81\)
Mà \(81=9^2=\left(-9\right)^2\)
Vậy \(x\in\left\{-9,9\right\}\)
a) \(x\left(x-3\right)>0\)
\(\Leftrightarrow x\) và \(x-3\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Rightarrow x>3\)
\(TH:\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
b) \(x\left(x+2\right)>0\)
\(\Leftrightarrow x\) và \(x+2\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x+2>0\end{cases}}\Rightarrow x>0\)
\(TH:\hept{\begin{cases}x< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -2\)
c) \(\left(x+5\right)2x>0\)
\(\Leftrightarrow2x^2+10x>0\)
\(\Leftrightarrow x\inℕ^∗\)
d) \(x\left(x+3\right)< 0\)
\(\Leftrightarrow x\) và \(x+3\) trái dấu
Mà x < x + 3 nên \(\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow-3< x< 0\)
Vậy \(x\in\left\{-2;-1\right\}\)
a) \(x^2+1>0\) thực tế lớn 1 không cần vì đang so sánh Với 0
=> để VT <0 cần (x-3)<0=> x<3 {âm nhân dương--> âm)
b) Lập bảng hợp lý nhất cho lớp 6
x | -VC | -7 | 4 | +VC | |
x+7 | - | 0 | + | + | + |
x-4 | - | - | - | 0 | + |
(x+7)(x-4) | + | 0 | - | 0 | + |
b) vậy x<-7 hoạc x>4 thì VT>0
c) x^2+5> 0 mọi x
=> chỉ xét x^2-16 =(x-4)(x+4)
lập bảng như (b)=> x<-4 hoac x>4
a, Do (x - 2)(5 - x) > 0
=> x - 2; 5 - x cùng dấu
Nếu \(\left\{{}\begin{matrix}x-2>0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 5\end{matrix}\right.\)<=> 2 < x < 5
Nếu \(\left\{{}\begin{matrix}x-2< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>5\end{matrix}\right.\)(vô lý)
Vậy x = 3; 4
b, Do (x - 3)(x - 7) < 0
=> x - 3; x - 7 khác dấu
Nếu \(\left\{{}\begin{matrix}x-3>0\\x-7< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 7\end{matrix}\right.\)<=> 3 < x < 7
Nếu \(\left\{{}\begin{matrix}x-3< 0\\x-7>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>7\end{matrix}\right.\)(vô lý)
Vậy x = 4; 5; 6
@Vũ Việt Anh
Vì (x-2)(5-x)>0 suy ra x-2 và 5-x cùng dấu
Trường hợp 1:
x-2 và 5-x cùng dương: Ta có x-2>0 suy ra x>2 (1)
5-x>0 suy ra x<5 (2)
Từ (1) và (2) suy ra 5>x>2
Trường hợp 2:
x-2 và 5-x cùng âm : Ta có x-2<0 suy ra x<2 (1)
5-x <0 suy ra x>5 (2)
Từ (1) và (2) ta thấy trường hợp trên vô lý
Vậy 5>x>2