Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn
a)
\(4x-10< 0\\ 4x< 10\\ x< \dfrac{10}{4}=\dfrac{5}{2}\)
b)
\(2x+x+12\ge0\\ 3x\ge-12\\ x\ge-\dfrac{12}{3}=-4\)
c)
\(x-5\ge3-x\\ 2x\ge8\\ x\ge4\)
d)
\(7-3x>9-x\\ -2>2x\\ x< -1\)
đ)
\(2x-\left(3-5x\right)\le4\left(x+3\right)\\ 2x-3+5x\le4x+12\\ 3x\le15\\ x\le5\)
e)
\(3x-6+x< 9-x\\ 5x< 15\\ x< 3\)
f)
\(2t-3+5t\ge4t+12\\ 3t\ge15\\ t\ge5\)
g)
\(3y-2\le2y-3\\ y\le-1\)
h)
\(3-4x+24+6x\ge x+27+3x\\ 0\ge2x\\ 0\ge x\)
i)
\(5-\left(6-x\right)\le4\left(3-2x\right)\\ 5-6+x\le12-8x\\ \\ 9x\le13\\ x\le\dfrac{13}{9}\)
k)
\(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\\ 10x-15-20x+28\ge19-2x-22\\ 13-10x\ge-2x-3\\ -8x\ge-16\\ x\le\dfrac{-16}{-8}=2\)
l)
\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\\ \dfrac{40x-100}{60}-\dfrac{90x-30}{2}< \dfrac{36-12x}{60}-\dfrac{30x-15}{60}\\ \Rightarrow40x-100-90x+30< 36-12x-30x+15\\ 130-50x< 51-42x\\ 92x< -79\\ x< -\dfrac{79}{92}\)
m)
\(5x-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+x\\ \dfrac{10x}{2}-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+\dfrac{2x}{2}\\ \Rightarrow10x-3+2x>7x-5+2x\\ 12x-3>9x-5\\ 3x>-2\\ x>-\dfrac{2}{3}\)
n)
\(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\\ \dfrac{28x-8}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3x-6}{12}\\ \Rightarrow28x-8-24x< 60-3x+6\\ 4x-8< -3x+66\\ 7x< 74\\ x< \dfrac{74}{7}\)
a) \(4x-10< 0\)
\(\Leftrightarrow4x< 10\)
\(\Leftrightarrow x< \dfrac{5}{2}\)
b) ???
c) \(x-5\ge3-x\)
\(\Leftrightarrow2x-5\ge3\)
\(\Leftrightarrow2x\ge8\)
\(\Leftrightarrow x\ge4\)
d) \(7-3x>9-x\)
\(\Leftrightarrow7-2x>9\)
\(\Leftrightarrow-2x>2\)
\(\Leftrightarrow x< -1\)
đ) ???
e) \(3x-6+x< 9-x\)
\(\Leftrightarrow4x-6< 9-x\)
\(\Leftrightarrow5x-6< 9\)
\(\Leftrightarrow5x< 15\)
\(\Leftrightarrow x< 3\)
f) ???
g) ???
h) \(3-4x+24+6x\ge x+27+3x\)
\(\Leftrightarrow2x+27\ge4x+27\)
\(\Leftrightarrow-2x\ge0\)
\(\Leftrightarrow x\le0\)
i) \(5-\left(6-x\right)\le4\left(3-2x\right)\)
\(\Leftrightarrow5-6+x\le12-8x\)
\(\Leftrightarrow x-1\le12-8x\)
\(\Leftrightarrow9x-1\le12\)
\(\Leftrightarrow9x\le13\)
\(\Leftrightarrow x\le\dfrac{13}{9}\)
k) \(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28\ge19-2x-22\)
\(\Leftrightarrow-10x+23\ge-3-2x\)
\(\Leftrightarrow-8x+13\ge-3\)
\(\Leftrightarrow-8x\ge-16\)
\(\Leftrightarrow x\ge2\)
l) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\)
\(\Leftrightarrow-\dfrac{5}{6}x-\dfrac{7}{6}< -\dfrac{7}{10}x+\dfrac{17}{20}\)
\(\Leftrightarrow-\dfrac{2}{15}x-\dfrac{7}{6}< \dfrac{17}{20}\)
\(\Leftrightarrow-\dfrac{2}{15}x< \dfrac{121}{60}\)
\(\Leftrightarrow x>-\dfrac{121}{8}\)
m, n) làm tương tự:
đáp án: m. \(x>-\dfrac{2}{3}\); n. \(x< \dfrac{74}{7}\)
Bạn Kim Tuyến làm sai rùi , mk sửa lại :
a) 4x2 - 4x + 1 > 9
⇔ 4x2 - 4x - 8 > 0
⇔4x2 + 4x - 8x - 8 > 0
⇔ 4x( x + 1) -8( x + 1) > 0
⇔ ( x + 1)( 4x - 8) > 0
⇔ ( x + 1)( x - 2) > 0
Lập bảng xét dấu , ta có :
x x+1 x-2 -1 2 0 0 - + + - - + Tích số + - + 0 0 Vậy, nghiệm của BPT : x < -1 hoặc : x > 2
b) ( x - 5)( 7 - 2x ) < 0
Lập bảng xét dấu :
x x-5 7-2x tích số 7/2 5 0 0 0 0 - - + + - - - + - Vậy , nghiệm của BPT : x < 7/2 hoặc x > 5
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
Áp dụng BĐT Cô - Si dạng Engel , ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≥ \(\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c
\(bpt\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
C-S: \(\left\{{}\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\end{matrix}\right.\)
Nhân theo vế suy ra đpcm
p/s: @Phùng Khánh Linh. Minh từng nói học toán phải từ gốc đến ngọn. Thực tế lp 8 còn ko biết đến C-S Engel là gì. Giải nên thiết thực với thực tế. T nói thế thôi ( góp ý hết sức nhẹ nhàng và éo tình cảm)
\(a.\dfrac{3x+1}{x^2+1}\ge0\)
Do : \(x^2+1>0\forall x\)
\(\Rightarrow3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)
KL ........
\(b.A=\dfrac{6x}{2x-1}=\dfrac{3\left(2x-1\right)+3}{2x-1}=3+\dfrac{3}{2x-1}\left(x\ne\dfrac{1}{2}\right)\)
Để : \(A\in Z\Leftrightarrow\dfrac{3}{2x-1}\in Z\Leftrightarrow2x-1\in\left\{\pm1;\pm3\right\}\)
\(\oplus2x-1=1\Leftrightarrow x=1\left(TM\right)\)
\(\oplus2x-1=-1\Leftrightarrow x=0\left(TM\right)\)
\(\oplus2x-1=3\Leftrightarrow x=2\left(TM\right)\)
\(\oplus2x-1=-3\Leftrightarrow x=-1\left(TM\right)\)
KL...........
\(c.B=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3+x}{3-x}-\dfrac{12x^2}{x^2-9}\right)=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{\left(3-x\right)\left(3+x\right)}{12x^2}=\dfrac{\left(x+1\right)\left(3+x\right)}{12x^3}\left(x\ne0;x\ne\pm3\right)\)
a: ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)
b: \(A=\left(\dfrac{x}{x-3}-\dfrac{2x-1}{x\left(x-3\right)}\right)\cdot\dfrac{x-3}{1}\)
\(=\dfrac{x^2-2x+1}{\left(x-3\right)\cdot x}\cdot\dfrac{x-3}{1}=\dfrac{\left(x-1\right)^2}{x}\)
Lời giải:
a)
Áp dụng bất đẳng thức AM-GM:
\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)
\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)
\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)
Dấu bằng xảy ra khi \(x=1\)
b)
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)
\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)
Dấu bằng xảy ra khi
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)
\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)
Do đó dấu bằng không xảy ra
Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
sai đề hết??
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)