K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

\(a.\dfrac{3x+1}{x^2+1}\ge0\)

Do : \(x^2+1>0\forall x\)

\(\Rightarrow3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)

KL ........

\(b.A=\dfrac{6x}{2x-1}=\dfrac{3\left(2x-1\right)+3}{2x-1}=3+\dfrac{3}{2x-1}\left(x\ne\dfrac{1}{2}\right)\)

Để : \(A\in Z\Leftrightarrow\dfrac{3}{2x-1}\in Z\Leftrightarrow2x-1\in\left\{\pm1;\pm3\right\}\)

\(\oplus2x-1=1\Leftrightarrow x=1\left(TM\right)\)

\(\oplus2x-1=-1\Leftrightarrow x=0\left(TM\right)\)

\(\oplus2x-1=3\Leftrightarrow x=2\left(TM\right)\)

\(\oplus2x-1=-3\Leftrightarrow x=-1\left(TM\right)\)

KL...........

\(c.B=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3+x}{3-x}-\dfrac{12x^2}{x^2-9}\right)=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{\left(3-x\right)\left(3+x\right)}{12x^2}=\dfrac{\left(x+1\right)\left(3+x\right)}{12x^3}\left(x\ne0;x\ne\pm3\right)\)

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

17 tháng 7 2017

Nguyễn Huy Tú :v

17 tháng 7 2017

a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)

đkxđ: x khác 3, x khác -3

(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)

=>3x+9 -6x + x2+3x

<=>x2 + 3x-6x+3x + 9

<=>x2 +9

<=>(x-3).(x+3)

22 tháng 7 2017

a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)

\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{-1}{2}\)

b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=-\dfrac{3}{x-3}\)

a: ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)

b: \(A=\left(\dfrac{x}{x-3}-\dfrac{2x-1}{x\left(x-3\right)}\right)\cdot\dfrac{x-3}{1}\)

\(=\dfrac{x^2-2x+1}{\left(x-3\right)\cdot x}\cdot\dfrac{x-3}{1}=\dfrac{\left(x-1\right)^2}{x}\)

 

3 tháng 1 2019

Đcm học ngu k biết xài caskov

7 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)

b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{x+4}{6}\)

c) Để P = 0

\(\Leftrightarrow\frac{x+4}{6}=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Để P = 1

\(\Leftrightarrow\frac{x+4}{6}=1\)

\(\Leftrightarrow x+4=6\)

\(\Leftrightarrow x=2\)

d) Để P > 0

\(\Leftrightarrow\frac{x+4}{6}>0\)

\(\Leftrightarrow x+4>0\)(Vì 6>0)

\(\Leftrightarrow x>-4\)

23 tháng 8 2018

c/ đk: x khác 1; x khác -3

\(\dfrac{3x-1}{x-1}+\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Rightarrow\left(3x+1\right)\left(x+3\right)+\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)

\(\Leftrightarrow3x^2+10x+3+2x^2+3x-5+4=x^2+2x-3\)

\(\Leftrightarrow4x^2+11x+5=0\)

\(\Leftrightarrow\left(4x^2+2\cdot2x\cdot\dfrac{11}{4}+\dfrac{121}{16}\right)-\dfrac{41}{16}=0\)

\(\Leftrightarrow\left(2x+\dfrac{11}{4}\right)^2=\dfrac{41}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{11}{4}=\dfrac{\sqrt{41}}{4}\\2x+\dfrac{11}{4}=-\dfrac{\sqrt{41}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{41}}{8}\\x=\dfrac{-11-\sqrt{41}}{8}\end{matrix}\right.\)

Vậy.........

d/ \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

đk: \(x\ne\pm\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{12x+1}{2\left(3x-1\right)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)

\(\Rightarrow2\left(12x+1\right)\left(3x+1\right)-4\left(9x-5\right)\left(3x-1\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+24x+6x+2-108x^2+36x-60x-20-108x+36x^2+9=0\)

\(\Leftrightarrow-102x-9=0\)

\(\Leftrightarrow-102x=9\Leftrightarrow x=-\dfrac{3}{34}\)(TM)

Vậy.........

23 tháng 8 2018

a/ \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\)

\(\Leftrightarrow2x\left(x^2+2x+1\right)=-24\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2x^3-2x^2+8x+6x^2-6x+24=0\)

\(\Leftrightarrow x\left(2x^2-2x+8\right)+3\left(2x^2-2x+8\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+8\right)\left(x+3\right)=0\)

\(\Leftrightarrow2\left(x^2-x+4\right)\left(x+3\right)=0\)

Ta thấy: \(x^2-x+4=\left(x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

=> x+ 3 = 0 <=> x= -3

Vậy......

b/ \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+x^2+5x+2x^2+x+5=0\)

\(\Leftrightarrow x\left(2x^2+x+5\right)+\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

Ta thấy: \(2x^2+x+5=\left(\sqrt{2}x+2\cdot\sqrt{2}x\cdot\dfrac{\sqrt{2}}{4}+\dfrac{1}{8}\right)+\dfrac{39}{8}=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{4}\right)^2+\dfrac{39}{8}>0\)

=> x + 1 = 0 <=> x = -1

Vậy....

24 tháng 6 2017

Phân thức đại số

Phân thức đại số