Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2-10x+7
<=>3x2-3x-7x+7
<=>3x(x-1)-7(x-1)
<=>(x-1)(3x-7)
P/s đề thiếu chỉ phân đến đây thôi
b: \(\dfrac{2x+3}{3-x}\le0\)
\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)
=>x>3 hoặc x<=-3/2
c: \(\dfrac{x+5}{x+3}>1\)
\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)
=>2/(x+3)>0
=>x+3>0
hay x>-3
chỉnh đề B
\(B=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3+\left(2x+1\right)x^2+\left(x-1\right)x\)
\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(=-x=-14\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a) \(3x^2-10x+7\)
\(=3\left(x^2-\frac{10}{3}x+\frac{7}{3}\right)\)
\(=3\left(x^2-\frac{10}{3}x+\frac{25}{9}-\frac{4}{9}\right)\)
\(=3\left[\left(x-\frac{5}{3}\right)^2-\frac{4}{9}\right]\)
\(=3\left[\left(x-\frac{5}{3}\right)^2\right]-\frac{4}{3}\ge\frac{-4}{3}>0\)
b) \(4x^2+9x+5\)
\(=4x^2+9x+\frac{81}{16}-\frac{1}{16}\)
\(=\left(2x+\frac{9}{4}\right)^2-\frac{1}{16}\ge\frac{-1}{16}>0\)
\(a,\frac{-9}{x}=\frac{-9}{\frac{4}{49}}\)
\(\Rightarrow x=\frac{4}{49}\)
\(b,\left|x-2\right|+\left|x+3\right|=0\)
\(\left|x-2\right|\ge0;\left|x+3\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=-3\end{cases}vl}}\)
\(c,3x^2+9x+6=0\)
\(\Rightarrow3x^2+3x+6x+6=0\)
\(\Rightarrow3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow\left(3x+6\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+6=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
\(d,x^2-7x-8=0\)
\(\Rightarrow x^2+x-8x-8=0\)
\(\Rightarrow x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Rightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
c) 3x2 - 10x + 7 \(\ge\)0
<=> 3x2 - 3x - 7x + 7 \(\ge\)0
<=> 3x(x - 1) - 7(x-1) \(\ge\)0
<=> (x-1)(3x - 7) \(\ge\)0
<=> x - 1 \(\ge\) 0 hoặc 3x - 7 \(\ge\)0
<=> x \(\ge\) 1 hoặc x \(\ge\)7/3
Vậy: ......
d) 4x2 + 9x + 5 \(\le\)0
<=>4x2 + 4x + 5x + 5 \(\le\)0
<=>4x(x + 1) + 5(x + 1) \(\le\)0
<=>(x + 1)(4x + 5) \(\le\)0
<=>x + 1 \(\le\)0 hoặc 4x + 5 \(\le\)0
<=>x \(\le\)-1 hoặc x \(\le\)-5/4