K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

29 tháng 7 2019

toan lop 8 nha minh kik nham

1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)

\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)

\(=5x^4+2x^2+\dfrac{3}{16}\)

2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)

12 tháng 3 2017

Câu 1:

C.14

Câu 2:

B.\(\dfrac{-2}{3}\)\(x^4\)\(y^4\)

Câu 3:

C.\(72^0\)

Câu 4: Không có hình nên mình tạm thời không làm nha

12 tháng 3 2017

Câu 1: Thay \(x=-1;y=2\) vào bt ta có:

\(5.\left(-1\right)^2+6.2-3=5.1+12-3=14\)

Vậy chọn ý C

Câu 2: Tính:

\(-\dfrac{1}{3}x^2y.2x^2y^3=\left(-\dfrac{1}{3}.2\right)\left(x^2.x^2\right)\left(y.y^3\right)\)

\(=-\dfrac{2}{3}x^4y^4\)

Vậy chịn ý B

Câu 3: gọi tam giác đó là: \(\Delta ABC\) cân tại A, có: \(\widehat{A}=36^o\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng 3 góc troq 1 tam giác)

hay \(36^o+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=180^o-36^o=144^o\)

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)

\(\Rightarrow\widehat{B}=\widehat{C}=\dfrac{144^o}{2}=72^o\)

Vậy chọn ý C

Câu 4: k có hình!

a)

Cách 1:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-x-9x+9=0\)

\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy: S={1;9}

Cách 2:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-10x+25-16=0\)

\(\Leftrightarrow\left(x-5\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy: S={9;1}

b)

Cách 1:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8x^2-12x+10x-15=0\)

\(\Leftrightarrow4x\left(2x-3\right)+5\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

Cách 2:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8\left(x^2-\frac{1}{4}x-\frac{15}{8}\right)=0\)

\(\Leftrightarrow x^2-\frac{1}{4}x-\frac{15}{8}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{8}+\frac{1}{64}-\frac{121}{64}=0\)

\(\Leftrightarrow\left(x-\frac{1}{8}\right)^2=\frac{121}{64}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{8}=\frac{11}{8}\\x-\frac{1}{8}=-\frac{11}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{8}=\frac{3}{2}\\x=\frac{-11+1}{8}=\frac{-10}{8}=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

c) Ta có: \(2x^2+8x-7=0\)

\(\Leftrightarrow2\left(x^2+4x-\frac{7}{2}\right)=0\)

\(\Leftrightarrow x^2+4x+4-\frac{15}{2}=0\)

\(\Leftrightarrow\left(x+2\right)^2=\frac{15}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\frac{15}{2}}\\x+2=-\sqrt{\frac{15}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{15}{2}}-2\\x=-\sqrt{\frac{15}{2}}-2\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{\frac{15}{2}}-2;-\sqrt{\frac{15}{2}}-2\right\}\)

d) Ta có: \(3x^2-15x+3=0\)

\(\Leftrightarrow3\left(x^2-5x+1\right)=0\)

\(\Leftrightarrow x^2-5x+1=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{21}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{21}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{21}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{21}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{21}+5}{2}\\x=\frac{-\sqrt{21}+5}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{\sqrt{21}+5}{2};\frac{-\sqrt{21}+5}{2}\right\}\)

e) Ta có: \(16x^2-24x-4=0\)

\(\Leftrightarrow4\left(4x^2-6x-1\right)=0\)

\(\Leftrightarrow4x^2-6x-1=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{13}{4}=0\)

\(\Leftrightarrow\left(2x-\frac{3}{2}\right)^2=\frac{13}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{13}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{3+\sqrt{13}}{2}\\2x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}:2=\frac{3+\sqrt{13}}{4}\\x=\frac{3-\sqrt{13}}{2}:2=\frac{3-\sqrt{13}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+\sqrt{13}}{4};\frac{3-\sqrt{13}}{4}\right\}\)

f) Ta có: \(-5x^2+6x+3=0\)

\(\Leftrightarrow-5\left(x^2-\frac{6}{5}x-\frac{3}{5}\right)=0\)

\(\Leftrightarrow x^2-\frac{6}{5}x-\frac{3}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{5}+\frac{9}{25}-\frac{24}{25}=0\)

\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\frac{24}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{5}=\frac{2\sqrt{6}}{5}\\x-\frac{3}{5}=\frac{-2\sqrt{6}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+2\sqrt{6}}{5}\\x=\frac{3-2\sqrt{6}}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+2\sqrt{6}}{5};\frac{3-2\sqrt{6}}{5}\right\}\)

i) Ta có: \(6x^2-9x+40=0\)

\(\Leftrightarrow6\left(x^2-\frac{3}{2}x+\frac{20}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{3}{2}x+\frac{20}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{293}{48}=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2+\frac{293}{48}=0\)(vô lý)

Vậy: \(S=\varnothing\)