K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(2x^2+2y^2-3z^2=-100\)

đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)

\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)

\(2x^2+2y^2-3z^2=-100\)

thay\(6k^2+8k^2-15k^2=-100\)

\(k^2\left(6+8-15\right)=-100\)

\(k^2.\left(-1\right)=-100\)

\(k^2=100\)

\(\Rightarrow k=\pm10\)

bạn thế vào nha

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

a: 3x=2y nên x/2=y/3

7y=5z nên y/5=z/7

=>x/10=y/15=z/21

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

=>x=20; y=30; z=42

b: 2x=3y=5z

nên x/15=y/10=z/6

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

=>x=75; y=50; z=30

d: Đặt x/3=y/4=z/5=k

=>x=3k; y=4k; z=5k

2x^2+2y^2-3z^2=-100

=>18k^2+32k^2-3*25k^2=-100

=>25k^2=100

=>k^2=4

TH1: k=2

=>x=6; y=8; z=10

TH2: k=-2

=>x=-6; y=-8; z=-10

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

Do đó: x=20; y=30; z=42

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

12 tháng 2 2018

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

12 tháng 2 2018

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

9 tháng 4 2016

cậu viết chắc lâu lắm nhỉ

a)x=4, y=6 ,z=10                                   c)x=6,y=9,z=12                              e)x=-3,y=-5,z=154/3

b)x=12,y=16,z=28                                   d) y=-28, x=-42,z=-20                   f)x=36,y=24,z=9

g)nản                                                    h)x=1,y=2,z=3

        làm mất bao nhiêu lâu. k đúng giùm

a)  ko có " z" sao làm!!

b) áp dụng t/c dãy tỉ số bằng nhau ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\) =\(\frac{z-x}{7-4}=\frac{16}{3}\)

=> x/3 = 16/3 => x = 16

=> y/4 = 16/3 => y = ...

=> z/7 = 16/3 => z = ...

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

26 tháng 7 2017

a) Ta có  : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)  

                \(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)

Vậy ....

b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)

Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được : 

\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)

Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)

Vậy .....

c) Ta có : \(x\div y\div z=3\div4\div5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)

Vậy ... 

d) Ta có  : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)

                \(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)

Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được : 

\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)

\(\Leftrightarrow63y-98y+50y=-420\)

\(\Leftrightarrow15y=-420\Rightarrow y=-28\)

Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)

e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)

 \(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)

Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)

Vậy ...

26 tháng 7 2017

a) ta có:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)

\(\frac{y}{6}=\frac{2y}{12}\)

 \(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)

áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\)        (2)

từ (1) và (2) suy ra:

\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)

..................................y;z bn tự tính ha!^^

b) ta có:

\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)

\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)

thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương  tự lun! (câu c mk ko pik làm đâu!^^)

e) 

ta có:

3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)

đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)

vì xy = 84 nên :   7k.3k = \(84\)

                      \(\Rightarrow21k^2=84\)

                      \(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)

với k = 2 thì x =........... ; y=................

với k=-2 thì x=........ ; y=.................... 

ự làm nốt ha!the end!^^