K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

a, Nhân từng vế ba đẳng thức được :

\(xy\cdot yz\cdot xz=\frac{2}{3}\cdot\frac{3}{5}\cdot\frac{5}{8}\)

\(\Rightarrow x^2y^2z^2=\frac{2}{8}=\frac{1}{4}\)

\(\Rightarrow(xyz)^2=\frac{1}{4}\), do đó \(xyz=\pm\frac{1}{2}\)

Nếu xyz = \(\frac{1}{2}\) thì cùng với xy = \(\frac{2}{3}\)suy ra z = \(\frac{3}{4}\) , cùng với yz = \(\frac{3}{5}\)suy ra x = \(\frac{5}{6}\), cùng với zx = \(\frac{5}{8}\)suy ra y = \(\frac{4}{5}\)

Nếu xyz = \(-\frac{1}{2}\)thì lập luận tương tự như trên suy ra : z = \(-\frac{3}{4}\), x = \(-\frac{5}{6}\), y = \(-\frac{4}{5}\)

b, Cộng từng vế ba đẳng thức được :

\(x(x-y+z)+y(y-z-x)+z(z+x-y)=49\)

Do đó \((z-y+x)^2=49\)nên \(z-y+x=\pm7\)

Tìm hai đáp số rồi xong

13 tháng 10 2021

b) \(\Rightarrow x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=49\) 

\(\Rightarrow x^2-xy+xz+y^2-yz-xy+z^2+xz-yz=49\)

\(\Rightarrow x^2+y^2+z^2-2xy-2yz+2xz=49\)

\(\Rightarrow x^2+\left(-y\right)^2+z^2+2x\left(-y\right)+2\left(-y\right)z+2xz=49\)

\(\Rightarrow\left(x+\left(-y\right)+z\right)^2=49\)

\(\Rightarrow\orbr{\begin{cases}x-y+z=7\\x-y+z=-7\end{cases}}\)  

+) \(x-y+z=7\)\(\Rightarrow\hept{\begin{cases}x=\frac{-11}{7}\\y=\frac{-25}{7}\\z=5\end{cases}}\)

+) \(x-y+z=-7\)\(\Rightarrow\hept{\begin{cases}x=\frac{11}{7}\\y=\frac{25}{7}\\z=-5\end{cases}}\)

17 tháng 1 2018

a,
\(\text{x(x-y+z)=-11 y(y-z-x)=25 z(z+x-y)=35 }\)

Cộng lại ta đc: x2+ y2+ z2 -xy +xz -yz-xy +xz -yz =  x2+ y2+ z2 -2xy +2xz -2yz = ( x- y+ z)2=49

\(\Leftrightarrow\)x-y+z = 7 thay vào x(x-y+z)=-11 ta có: x. 7=-11 suy ra x= -11/7

                                             z(z+x-y)=35 ta có: z .7 =35 suy ra z = 5

Thay x và z vào đẳng thức còn lại ta tìm đc y bn tự lm nhé!

b,xy=2/3 

yz=0,6

zx=0,625

Nhân 3 đẳng thức trên với nhau ta đc:

xy.yz.zx = 2/3 . 0,6 . 0,625 

\(\Leftrightarrow\)(xyz)2= 0, 25 

\(\Leftrightarrow\)xyz = 0,5 thay vào xy = 2/3 ta có: z = 0,5 : 2/3 = 3/4 ( lấy xyz chia  cho xy) 

                                                                    Tự lm tiếp nhé!

                                   

                                           

Bài 2: 

Ta có: \(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)

\(\Leftrightarrow\left(\dfrac{x-1}{65}-1\right)+\left(\dfrac{x-3}{63}-1\right)=\left(\dfrac{x-5}{61}-1\right)+\left(\dfrac{x-7}{59}-1\right)\)

\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)

=>x-66=0

hay x=66

a)Ta có: xy=2/3 và yz=0,6

nên xy*yz=2/3*0,6

xz*y2=0,4

mà xz=0,625

nên 0,625*y2=0,4

y2=0,4/0,625

y2=0,64 nên y=0,8 hoặc y=-0,8

*)nếu y=0,8

thì x=2/3:0,8=5/6

thì z=0,6:0,8=0,75

*)Nếu y=-0,8

thì x=2/3:(-0,8)=-5/6

thì z=0,6:(-0,8)=-0,75

 

8 tháng 1 2016

nhân xy.yz.zx=...=>(xyz)^2=...

theo hướng đó mà làm

b)thiếu  đề

16 tháng 10 2017

Đang tl thì cái quảng cáo nở ra, bấm Đồng ý ở chỗ nhập Công thức thì mất sạch cả 2 bài, tiếc quá, thôi ko làm nữa

21 tháng 2 2024

Bài 1:

 \(\dfrac{x-1000}{24}\) + \(\dfrac{x-998}{26}\) + \(\dfrac{x-996}{28}\) = 3

 \(\dfrac{x-1000}{24}\) + \(\dfrac{x-998}{26}\) + \(\dfrac{x-996}{28}\) - 3 = 0

(\(\dfrac{x-1000}{24}\) - 1) + (\(\dfrac{x-998}{26}\) - 1) + (\(\dfrac{x-996}{28}\) - 1) =0

\(\dfrac{x-1024}{24}\) + \(\dfrac{x-2024}{26}\) + \(\dfrac{x-2024}{28}\) = 0

(\(x\) - 2024).(\(\dfrac{1}{24}\) + \(\dfrac{1}{26}\) + \(\dfrac{1}{28}\)) = 0

\(x-2024\) =  0

\(x=2024\)

Vậy \(x=2024\)

25 tháng 2 2017

Câu a thôi nhá

a) +) Xét 1 trong 3 số x,y,z bằng 0 => xyz=0

                                                   => x+y+z=0. Mà một trong 3 số bằng 0

                                                   => x+y=0 hoặc y+z=0 hoặc x+z=0

                                                   => x=-y hoặc y=-z hoặc z=-x.

    +) Xét x,y,x khác 0.

Vì vai trò của x,y,x là bình đẳng nên ta giả sử x<=y<=z.

=> x+y+z=xyz<= 3z

=> x+y<=3

Tự làm tiếp nhá

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

20 tháng 11 2021

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

20 tháng 11 2021

Cảm ơn anh rất nhìu

25 tháng 8 2020

Bài làm:

Dễ thấy a,b,c khác 0

Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)

Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)

Cộng vế (1);(2) và (3) lại ta được:

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)

Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)

Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)

Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)