K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

18 tháng 7 2018

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...

11 tháng 2 2022

anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất 

a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)

20 tháng 7 2019

mấy bài này dễ mà bạn

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)Giải :Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)Xảy ra hai trường hợp \(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow...
Đọc tiếp

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Giải :

Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)

                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)

Xảy ra hai trường hợp 

\(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow x\left(x+3\right)\ge0\) 

\(\left(II\right)\hept{\begin{cases}x^2+3x\le0\\x^2+3x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\le0\\x\left(x+3\right)\le-2\end{cases}}}\Rightarrow x\left(x+3\right)\le-2\)

\(\Rightarrow\orbr{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\le-2\end{cases}}\)

+)  Với \(x\left(x+3\right)\ge0\)

=> \(\hept{\begin{cases}x\ge0\\x\ge-3\end{cases}}\)           hoặc                 \(\hept{\begin{cases}x\le0\\x\le-3\end{cases}}\)

=>  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\)

+)  Với  \(x\left(x+3\right)\le-2\)=> \(x^2+3x+2\le0\)  =>  \(\left(x+1\right)\left(x+2\right)\le0\)

=> \(\hept{\begin{cases}x+1\ge0\\x+2\le0\end{cases}}\)                          hoặc                \(\hept{\begin{cases}x+1\le0\\x+2\ge0\end{cases}}\)

=>  \(\hept{\begin{cases}x\ge-1\\x\le-2\end{cases}}\left(removed\right)\)     hoặc                \(\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\Rightarrow-2\le x\le-1\Rightarrow x\in\left\{-2;-1\right\}\)

Vậy với \(y^2\ge0\) thì  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\) hoặc  \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Đẳng thức xảy ra <=> dấu bằng của các trường hợp được xét trên xảy ra    hay   

\(\hept{\begin{cases}y=0\\x\in\left\{0;-1;-2;-3\right\}\end{cases}}\)

 

P/s : Mấy pác xem hộ em :) , sai chỗ nào chỉ em với :V 

0