\(\frac{1}{3};3;\frac{3}{200}\left(x,y\ne0\right).\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

Theo đề bài ta có:

\(\frac{1}{3}\left(x+y\right)=3\left(x-y\right)=\frac{3}{200}xy=\frac{x+y}{3}=\frac{x-y}{\frac{1}{3}}=\frac{2x}{3+\frac{1}{3}}=\frac{2x}{\frac{10}{3}}=\frac{2y}{3-\frac{1}{3}}=\frac{2y}{\frac{8}{3}}\)

\(\frac{3}{200}xy=\frac{2x}{\frac{10}{3}}\Rightarrow y=40\left(x\ne0\right)\)

\(\frac{3}{200}xy=\frac{2y}{\frac{8}{3}}\Rightarrow x=50\left(y\ne0\right)\)

Vậy 2 số đó là 50 và 40.

1 tháng 4 2017

<=> x+y+2=xy

<=> y+2=xy-x

<=> y+2=x(y-1)

<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)

Vậy, để x nguyên thì y-1 phải là ước của 3

=> y-1={-3; -1; 1; 3}

=> y={-2; 0; 2; 4}

=> x={0; -2; 4; 2}

Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)

29 tháng 11 2017

Bạn Hùng nhầm công thức

Bạn Hoa giải đúng

4 tháng 12 2017

bạn Hoa giải đúng . Bạn Hùng nhầm công thức

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0
12 tháng 8 2015

1

a/

[x+1].[x-2] < 0 => x+1 và x-2 trái dấu

mà x+1 > x-2 

=> x+1 > 0 ; x-2 < 0

=> -1 < x < 2 , x thuộc Q

b/

T.tự -2/3 < x < 2 , x thuộc Q

2.

x+y  = xy 

=> y  = xy -x = x.[y-1]

=> x : y = y-1 = x+y

            => x = -1 

thay vào x+y = xy

=> y-1 = -y => 2y = 1 => y= 1/2

Vậy x= -1 ; y = 1/2