Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{3}=\dfrac{7}{y}\)⇒ x.y = 7.3
⇒ x.y = 21
⇒ Ta có cùng nhiều kết quả:
x | 1 | 21 | 3 | 7 |
y | 21 | 1 | 7 | 3 |
b)\(\dfrac{x}{2}=\dfrac{y}{5}\) và x+y = 35
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)⇒\(\dfrac{x+y}{2+5}=\dfrac{35}{7}\) = 5
⇒ \(\dfrac{x}{2}=\) 5⇒ x=10
⇒ y= 35 - 10 = 25
Vì x;y là số nguyên nên cũng nhận được giá trị âm bạn nhé ( ở câu a)
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
a) \(\dfrac{-5}{6}.\dfrac{120}{25}< x< \dfrac{-7}{15}.\dfrac{9}{14}\)
\(\Rightarrow-4< x< \dfrac{-3}{10}\)
\(\Rightarrow\dfrac{-40}{10}< x< \dfrac{-3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{-39}{10};\dfrac{-38}{10};\dfrac{-37}{10};...;\dfrac{-5}{10};\dfrac{-4}{10}\right\}\)
b) \(\left(\dfrac{-5}{3}\right)^2< x< \dfrac{-24}{35}.\dfrac{-5}{6}\)
\(\Rightarrow\dfrac{25}{9}< x< \dfrac{4}{7}\)
\(\Rightarrow\dfrac{175}{63}< x< \dfrac{36}{63}\)
\(\Rightarrow x=\varnothing\)
c) \(\dfrac{1}{18}< \dfrac{x}{12}< \dfrac{y}{9}< \dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{36}< \dfrac{3x}{36}< \dfrac{4y}{36}< \dfrac{9}{36}\)
\(\Rightarrow x\in\left\{1;2\right\}\)
+) Với \(x=1\)
\(\Rightarrow y\in\left\{1;2\right\}\)
+) Với \(x=2\)
\(\Rightarrow y=2\)
Vậy \(x=1\) thì \(y\in\left\{1;2\right\}\); \(x=2\) thì \(y=8\).
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3.3+4.9}=\dfrac{63}{31}=2\)
\(\Rightarrow x=8\)
\(\Rightarrow y=6\)
\(\Rightarrow z=18\)
b. c. Xem lại đề.
1. a, \(\dfrac{x}{7}=\dfrac{9}{y}\Leftrightarrow xy=9.7\)
<=> xy = 63
=> x; y \(\inƯ\left(63\right)\)
Lại có x > y nên ta có bảng :
x | 63 | -1 | 21 | -3 | 9 | -7 |
y | 1 | -63 | 3 | -21 | 7 | -9 |
@Đặng Hoài An
1. b, \(\dfrac{-2}{x}=\dfrac{y}{5}\Leftrightarrow-2.5=xy\)
<=> -10 = xy
=> x; y \(\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lại có : x < 0 < y
=> x = -1; -2; -5; -10
Tương ứng y = 10; 5; 2; 1
@Đặng Hoài An
a) \(x\)=1 \(y\)= 12
b)\(x\)=4 \(y\)= 14
hoặc \(x\)= 6 \(y \)=21
...
a. \(\Rightarrow\left\{\begin{matrix}\dfrac{-10}{15}=\dfrac{x}{-9}\\\dfrac{-10}{15}=\dfrac{-8}{y}\\\dfrac{-10}{15}=\dfrac{z}{-21}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b. \(\Rightarrow\left\{\begin{matrix}\dfrac{-7}{6}=\dfrac{x}{18}\\\dfrac{-7}{6}=\dfrac{-98}{y}\\\dfrac{-7}{6}=\dfrac{-14}{z}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-21\\y=84\\z=-12\end{matrix}\right.\)
a) Ta có: \(\dfrac{-10}{15}=\dfrac{x}{-9}\)
\(\Rightarrow15x=-10.\left(-9\right)\)
\(\Rightarrow15x=90\)
\(\Rightarrow x=6\)
Khi đó: \(\dfrac{6}{-9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
\(\Rightarrow y=\dfrac{-8\left(-9\right)}{6}=12\)
và \(z=\dfrac{-8\left(-21\right)}{12}\) \(=14\)
Vậy \(\left[{}\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b) Lại có: \(\dfrac{-7}{6}=\dfrac{x}{18}\)
\(\Rightarrow6x=-7.18\)
\(\Rightarrow6x=-126\)
\(\Rightarrow x=-21\)
Khi đó \(\dfrac{-21}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}\)
\(\Rightarrow y=\dfrac{-98.18}{-21}=84\)
và \(z=\dfrac{-14.84}{-98}=12\)
Vậy \(\left[{}\begin{matrix}x=-21\\y=84\\z=12\end{matrix}\right.\)
a: \(y:\dfrac{2}{3}=-\dfrac{7}{2}+\dfrac{3}{5}=\dfrac{-35+6}{10}=\dfrac{-29}{10}\)
nên \(y=-\dfrac{29}{10}\cdot\dfrac{2}{3}=\dfrac{-58}{30}=-\dfrac{29}{15}\)
b: \(\dfrac{y}{-7}=-\dfrac{20}{35}\)
nên y/7=20/35
hay y=4
c: \(\dfrac{4}{5}=\dfrac{36}{-y}\)
nên \(y=-36\cdot\dfrac{5}{4}=-45\)
bạn tham khảo
-> xy = 7 . 9
xy = 63
( bạn kẻ bảng ra và vd các số nhân với nhau ra 63 thì bạn lần lượt là x , y rồi ngược lại )
mik chỉ lấy 1 vài vd thôi nha , còn nhiều lắm