Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\Rightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\)
\(\Rightarrow x=2010\)
\(\frac{-1}{3}\le x\le\frac{-2}{7}\Rightarrow\frac{-7}{21}\le x\le\frac{-6}{21}\Rightarrow x\varepsilon\left\{\frac{-7}{21};\frac{-6}{21}\right\}\)
Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lẻ.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
a, \(\frac{-x}{4}=\frac{-9}{x}\Leftrightarrow2x=36\Leftrightarrow x=18\)
b, \(\frac{-x}{4}=\frac{-18}{x+1}\Leftrightarrow x^2+x=72\Leftrightarrow x\left(x+1\right)=72\)
\(\Leftrightarrow\orbr{\begin{cases}x=72\\x=71\end{cases}}\)
a, \(\frac{-x}{4}=\frac{-9}{x}\left(x\ne0\right)\Leftrightarrow-x^2=-36\)
\(\Leftrightarrow x^2=36\Rightarrow x=\pm6\)
b, \(\frac{-x}{4}=\frac{-18}{x+1}\left(x\ne-1\right)\Leftrightarrow-x.\left(x+1\right)=-72\)
\(\Leftrightarrow x.\left(x+1\right)=72\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow\left(x-8\right).\left(x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}}\)
\(\frac{-x}{4}=\frac{-18}{x+1}\) ĐKXĐ : \(x\ne-1\)
\(\Leftrightarrow x^2+x=72\Leftrightarrow x^2+x-72=0\)
TH1 : \(\Delta=1^2-4.1.\left(-72\right)=1+288=289>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-1-\sqrt{289}}{2}=\frac{-1-17}{2}=-\frac{18}{2}=-9\)
\(x_2=\frac{-1+\sqrt{289}}{2}=\frac{-1+17}{2}=\frac{16}{2}=8\)
TH2 : \(\left(x-8\right)\left(x+9\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow\)\(x\left(x+1\right)=4.18\)
\(\Leftrightarrow\)\(x\left(x+1\right)=72\)
\(\Leftrightarrow\)\(x^2+x-72=0\)
\(\Leftrightarrow\)\(\left(x-8\right)\left(x+9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-8=0\\x+9=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)
Vậy....
tim x thuoc Z biet x4 = 18x+1
giup voi
Toán lớp 6
Đường Quỳnh Giang 14 giây trước (18:57)
Thống kê hỏi đáp
Báo cáo sai phạm
x4 =18x+1
⇔x(x+1)=4.18
⇔x(x+1)=72
⇔x2+x−72=0
⇔(x−8)(x+9)=0
⇔[
⇔[
Vậy \(x=8\)hoặc \(-9\)