Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b.\)
\(27< 81^5:3^n< 387420489\)
\(\Rightarrow3^3< 3^{20}:3^n< 3^{18}\)
\(\Rightarrow n=\left\{16;15;14;13;12;11;10;9;8;7;6;5;4;3\right\}\)
Vậy : \(n=\left\{16;15;14;13;12;11;10;9;8;7;6;5;4;3\right\}\)
\(a.\)
\(4< 2^n< 32768.2^{-5}\)
\(\Rightarrow2^2< 2^n< 2^{10}\)
\(\Rightarrow2< n< 10\)
\(\Rightarrow n\in\left\{3;4;5;6;7;8;9\right\}\)
Vậy : \(n\in\left\{3;4;5;6;7;8;9\right\}\)
32 < 2x < 22x-3 . 28-2x
=> 25 < 2x < 22x - 3 . 28 - 2x
=> 25 < 2x < 25
=> 2x = 25
=> x = 5
\(2)\) Ta có :
\(n^{200}< 3^{400}\)
\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)
\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)
\(\Leftrightarrow\)\(n^{200}< 9^{200}\)
Mà \(n\) lớn nhất nên \(n=8\)
Vậy \(n=8\)
Chúc bạn học tốt ~
a)2x+3+2x=144
2x*23+2x=144
2x * (23+1)=144
2x * 9 =144
2x=144/9=16
2x=16 =>x=4
b) 7x+7x+1=392
7x + 7x * 7 =392
7x * (1+7)=392
7x * 8= 392
7x= 392/8=49
7x=49 => x=2
d) 3x+3x+3=2268
3x+ 3x * 33=2268
3x *(1+33)=2268
3x*28=2268
3x=2268/28
3x=81 =>x=4
e) 9x+2+9x-92*82=0
9x*92+9x-92 *82=0
9x*(92+1)-92*82=0
9x*82-92*82=0
82*(9x-92)=0
=>9x-92=0
9x=0+92=92
=>x=2
f)8x. 16-2x=45
23x. 24 . -2x=45
23x+ 4 . -2x =45
23x-8x=45
2-5x =210
=>-5x=10 =>x=-2
Ta có \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{1}{2}x+5\right)^{20}+\left(y^2-\frac{1}{2}\right)^{10}\ge0\forall x;y\)
mà \(\left(\frac{1}{2}x+5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
=> Đẳng thức xảy ra <=> \(\hept{\begin{cases}\frac{1}{2}x+5=0\\y^2-\frac{1}{4}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=-5\\y^2=\frac{1}{4}\end{cases}}\Rightarrow\hept{\begin{cases}x=-10\\y=\pm\frac{1}{2}\end{cases}}\)
Vậy các cặp (x;y) thỏa mãn là \(\left(-10;\frac{1}{2}\right);\left(-10;-\frac{1}{2}\right)\)
( 1/2x - 5 )20 + ( y2 - 1/4 )10 ≤ 0 (1)
Ta có : \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}\Rightarrow}\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall x,y\)(2)
Từ (1) và (2) => Chỉ xảy ra trường hợp ( 1/2x - 5 )20 + ( y2 - 1/4 )10 = 0
=> \(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)
Vậy ( x ; y ) = { ( 10 ; 1/2 ) , ( 10 ; -1/2 ) }
Ta có: \(8< 2^x< 2^9.2^{-5}\)
\(\Leftrightarrow2^3< 2^x< 2^4\)
Mà x là số tự nhiên
=> Không tồn tại x thỏa mãn