Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$
2.
a)
$x^3-9x^2+27x-27=-8$
$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$
$\Leftrightarrow (x-3)^3=-8=(-2)^3$
$\Rightarrow x-3=-2$
$\Leftrightarrow x=1$
b)
$64x^3+48x^2+12x+1=27$
$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$
$\Leftrightarrow (4x+1)^3=3^3$
$\Rightarrow 4x+1=3$
$\Leftrightarrow x=\frac{1}{2}$
= \(x^3-3.x^2.\frac{1}{3}-3.x.\left(\frac{1}{3}\right)^2-\left(\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)^3\)
x3 - x2 + 1/3x - 1/27
= x3−3.x2.1/3 −3.x.(1/3 )2−(1/3 )3
=(x−1/3 )3
a) số lẻ wa
b)(x - 1)3 - (x + 3) . (x2 - 3x +9) + 3 . (x + 2) . (x - 2) = 2
\(VT=3x-40\)
\(\Leftrightarrow3x-40=2\)
\(\Leftrightarrow3x=42\)
\(\Leftrightarrow x=14\)
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
a) 3(x - 1)2 - 3x(x - 5) = 3(x2 - 2x + 1) - 3x2 + 15x = 3x2 - 6x + 3 - 3x2 + 15x = 9x + 3 = 21 => x = (21 - 3) : 9 = 18 : 9 = 2
b) 3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63
= 8x + 76 = 36 => x = (36 - 76) : 8 = -40 : 8 = -5
b: \(\Leftrightarrow2\left(x^2-2x+1\right)-3x^2+5x-1=0\)
\(\Leftrightarrow2x^2-4x+2-3x^2+5x-1=0\)
\(\Leftrightarrow-x^2+x+1=0\)
\(\Leftrightarrow x^2-x-1=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-1\right)=5\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{5}}{2}\\x_2=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
c: \(\Leftrightarrow x^2+6x+9-1-\left(x^2+8x-4x-32\right)=0\)
\(\Leftrightarrow x^2+6x+8-x^2-4x+32=0\)
=>2x+40=0
hay x=-20
d: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)
\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)
=>8x+76=36
hay x=-5
b) \(\left(x-1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
\(=6x^2-6x^2+1+1+6\)
\(=8\)
Vậy biểu thức trên k phụ thuộc vào biến.
(x + 1)(x + 2)(x + 5) − x2(x + 8) = 27
x2 + 2x + x + 2(x + 5) − x3 − 8x2 = 27
x2(x + 5) + 2x(x + 5) + x(x + 5) + 2(x + 5) − x3 − 8x2 = 27
x3 + 5x2 + 2x2 + 10x + x2 + 5x + 2x + 10 − x3 − 8x2 = 27
17x + 10 = 27
17x = 17
x = 17 : 17
x = 1
Vậy x = 1