Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BĐT côsi ta được x4+y4>= 2x2y2
cộng x4+y4 vào hai vế ta được x4+y4>=\(\frac{1}{2}\)(x2+y2)2
tương tự x2+y2>=\(\frac{1}{2}\)(x+y)2
suy ra x4+y4>=\(\frac{\left(x+y\right)^4}{8}\)
Nếu làm đúng theo quy tắc trong biểu thức thì KQ chính xác là 9
Nếu chuyễn cho hai hộp bằng nhau thì mỗi hộp có số kg chè là :
\(13,6:2=6,8\left(kg\right)\)
Lúc đầu hộp thứ nhất có số \(kg\) chè là :
\(6,8+1,2=8\left(kg\right)\)
Lúc đầu hộp thứ hai có số \(kg\) chè là :
\(13,6-8=5,6\left(kg\right)\)
Vậy :
Lúc đầu hộp thứ nhất có số \(kg\) chè là : \(8\left(kg\right)\)
Lúc đầu hộp thứ hai có số \(kg\) chè là : \(5,6\left(kg\right)\)
Câu hỏi của Nguyễn Quỳnh Nga - Toán lớp 5 - Học toán với OnlineMath
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
a) 2323 . 474747 - 4747 . 232323
= 23 . 101 . 47 . 10101 - 101 . 47 . 23 . 10101
= 0 (Vì số bị trừ = số trừ)
a) ta có :
\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)
hay \(m\left(m^2+m-1\right)\ge0\)
=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)
Theo bài ra :
\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)
<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)
Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)
Ta có bảng xét dấu :
\(-\infty\) | -5 | -1 | 1 | 3 | \(+\infty\) | ||||
(x+5) | - | 0 | + | + | + | + | |||
x2-1 | + | + | 0 | - | 0 | + | + | ||
3-x | + | + | + | + | 0 | - | |||
A | - (loại) | 0 (loại) | +(t.m) | 0(loại) | -(loại) | 0(loại) | +(t.m) | 0(loại) | -(loại) |
Từ bảng xét dấu trên suy ra :
\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)
\(\left(3x+1\right)^5=\frac{1}{32}\)
\(\left(3x+1\right)^5=\left(\frac{1}{2}\right)^5\)
\(3x+1=\frac{1}{2}\)
\(3x=\frac{1}{2}-1\)
\(3x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div3\)
\(x=-\frac{1}{2}\times\frac{1}{3}\)
\(x=-\frac{1}{6}\)
\(\left(3x+1\right)^5=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow3x+1=\frac{1}{2}\)
\(\Rightarrow3x=\frac{1}{2}-1=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2}:2=\frac{-1}{6}\)