\(\left(25-x\right)+\left(29-x\right)+...+\left(101-x\right)=108\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(\left(25-x\right)+\left(29-x\right)+...+\left(101-x\right)=108\)

\(\Leftrightarrow\left(25+29+...+101\right)-\left(x+x+....+x\right)=108\)

\(\Leftrightarrow1260-20x=180\)

\(\Leftrightarrow20x=1080\)

\(\Leftrightarrow x=54\)

13 tháng 9 2016

Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{1}{102}\right|+....+\left|x+\frac{100}{101}\right|>0\)

\(\Rightarrow101x>0\)

\(\Rightarrow x>0\)

\(\Rightarrow\left(x+\frac{1}{101}\right)+.....+\left(x+\frac{100}{101}\right)=101x\)

\(\Rightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)

\(\Rightarrow x=\frac{\left(100+1\right)100:2}{101}\)

\(\Rightarrow x=\frac{50.101}{101}\)

\(\Rightarrow x=50\)

Vậy x = 50

13 tháng 9 2016

Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)

=> \(101x\ge0\)

=> \(x\ge0\)

=> \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)

=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)

            100 số x                          100 phân số

=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)

=> \(\frac{101.50}{101}=101x-100x\)

=> \(x=50\)

19 tháng 9 2016

a ) \(3-4.\left|5-6x\right|=7\)

\(\Leftrightarrow4.\left|5-6x\right|=-4\)

\(\Leftrightarrow\left|5-6x\right|=-1\)

\(\Leftrightarrow\) Không thõa mãn ( vì \(x\ge0\) )

19 tháng 9 2016

b) Do \(\left|x+2\right|\ge0;\left|x+\frac{3}{5}\right|\ge0;\left|x+\frac{1}{2}\right|\ge0\)

=> \(4x\ge0\)

=> \(x\ge0\)

Lúc này ta có: \(\left(x+2\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{1}{2}\right)=4x\)

=> \(\left(x+x+x\right)+\left(2+\frac{3}{5}+\frac{1}{2}\right)=4x\)

=> \(3x+\frac{31}{10}=4x\)

=> \(4x-3x=\frac{31}{10}\)

=> \(x=\frac{31}{10}\)

Vậy \(x=\frac{31}{10}\)

c) Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)

=> \(101x\ge0\)

=> \(x\ge0\)

Lúc này ta có: \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)

=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)

               100 số x

=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)

=> \(\frac{101.50}{101}=101x-100x\)

=> \(x=50\)

Vậy x = 50

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.100
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.101
4A=98.99.100.101
4A=97990200
A=979902004979902004
A=24497550
22 tháng 8 2017

a, Vào câu hỏi tương tự nhé

b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)

=> x+3+x+1=3x

=> 2x+4=3x

=>x=4

c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)

=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)

=> \(2005\ge\left|x+101\right|+2004\)

=> \(\left|x+101\right|\le1\)

=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)

d, tương tự b

x=100

nên x+1=101

\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)

\(=x+25\)

=x+25=100+25=125

22 tháng 10 2018

Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)

\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)

\(\Rightarrow101x\ge0\)

\(\Rightarrow x\ge0\)

Từ điều kiện trên ta có :

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(100x+\frac{1+2+...+100}{101}=101x\)

\(101x-100x=\frac{5050}{101}\)

\(x=50\)

Vậy x = 50

22 tháng 10 2018

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)

\(KĐ:101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)

\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)

\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)

\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)

\(x=\frac{101.100:2}{101}\)

\(x=50\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

30 tháng 11 2016

a)\(-x^2\left(x^2-4\right)=-25\left(x^2-4\right)\)

\(\Leftrightarrow-x^2=-25\)

\(\Leftrightarrow x^2=25\)

\(\Leftrightarrow x=\pm5\)