Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho
\(\Leftrightarrow0< x^2+x-2< x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)
b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)
Ta có:
\(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)
\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)
\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)
\(\Leftrightarrow2x-1\ge0\)
Bất phương trình tương đương với:
\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)
Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)
a/ \(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(< =>-12x+60+21-7x=5\)
\(< =>-19x+81=5\)
\(< =>-19x=-76\)
\(< =>x=\frac{76}{19}\)
b/ 30(x+2)-6(x-5)-24x=100
<=>30x + 60 - 6x + 30 - 24x =100
<=> 90=100( vô lý)
c/ \(\left(x-1\right)\left(x^2+1\right)=0\)
\(< =>\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}< =>\hept{\begin{cases}x=1\\x^2=-1\left(voly\right)\end{cases}}\)
d/ làm rồi mà
a. \(-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-19x+81=5\)
\(-19x=-76\)
\(x=4\)
b. \(30.\left(x+2\right)-6.\left(x-5\right)-24x=100\)
\(30x+60-6x+30-24x=100\)
\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)
\(90=100\)(vô lí)
\(\Rightarrow x=\varnothing\)
c. \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\left(loại\right)\end{cases}}}\)
\(\Rightarrow x=1\)
Câu d) chính là câu a) :D
pt đã cho tương đương: 2x + 2.2x + 4.2x = 3x + 3.3x + 9.3x
\(\Leftrightarrow\) 7.2x=13.3x
\(\Leftrightarrow\) 2x = 13/7 . 3x
log hai vế của phương trình với cơ số 2, ta có x= log2(13/7) + xlog23
vậy x= \(\frac{log_2\frac{13}{7}}{1-log_23}\)
\(a,1+x=2\)
\(\Leftrightarrow x=2-1\)
\(\Rightarrow x=1\)
\(Do\)\(x\ne1\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
\(b,1-1=x\)
\(\Leftrightarrow0=x\)
\(\Leftrightarrow x=0\)
\(Do\)\(x\ne0\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
Lấy tích phân 2 vế giả thiết:
\(\int\limits^1_0\left(f'\left(x\right)\right)^2dx+4\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(8x^2+4\right)dx=\frac{20}{3}\)
Xét \(I=\int\limits^1_0f\left(x\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.f\left(x\right)|^1_0-\int\limits^1_0x.f'\left(x\right)dx=2-\int\limits^1_0x.f'\left(x\right)dx\)
\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+8-4\int\limits^1_0x.f'\left(x\right)dx=\frac{20}{3}\)
\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx-2\int\limits^1_02x.f'\left(x\right)dx+\int\limits^1_04x^2dx=\frac{20}{3}-8+\int\limits^1_04x^2dx=0\)
\(\Leftrightarrow\int\limits^1_0\left[\left[f'\left(x\right)\right]^2-2.2x.f'\left(x\right)+4x^2\right]dx=0\)
\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2x\right]^2dx=0\Rightarrow f'\left(x\right)=2x\)
\(\Rightarrow f\left(x\right)=x^2+C\)
Do \(f\left(1\right)=2\Rightarrow2=1+C\Rightarrow C=1\)
\(\Rightarrow f\left(x\right)=x^2+1\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^2+1\right)dx=\frac{4}{3}\)
a) Mẫu số chứa các biểu thức có nghiệm thực và không có nghiệm thực.
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\left(1\right)\)
Tay x=1 vào 2 tử, ta có : 2=2A, vậy A=1
Do đó (1) trở thành :
\(\frac{1\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(B+1\right)x^2+\left(C-B\right)x+1-C}{\left(x-1\right)\left(x^2+1\right)}\)
Đồng nhất hệ số hai tử số, ta có hệ :
\(\begin{cases}B+1=1\\C-B=2\\1-C=-1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}B=0\\C=2\\A=1\end{cases}\)\(\Rightarrow\)
\(f\left(x\right)=\frac{1}{x-1}+\frac{2}{x^2+1}\)
Vậy :
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\int\frac{1}{x-1}dx+2\int\frac{1}{x^2+1}=\ln\left|x+1\right|+2J+C\left(2\right)\)
* Tính \(J=\int\frac{1}{x^2+1}dx.\)
Đặt \(\begin{cases}x=\tan t\rightarrow dx=\left(1+\tan^2t\right)dt\\1+x^2=1+\tan^2t\end{cases}\)
Cho nên :
\(\int\frac{1}{x^2+1}dx=\int\frac{1}{1+\tan^2t}\left(1+\tan^2t\right)dt=\int dt=t;do:x=\tan t\Rightarrow t=arc\tan x\)
Do đó, thay tích phân J vào (2), ta có :
\(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\ln\left|x-1\right|+arc\tan x+C\)
b) Ta phân tích
\(f\left(x\right)=\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}+\frac{D}{x+3}\)\(=\frac{A\left(x+3\right)+B\left(x-1\right)\left(x+3\right)+C\left(x-1\right)^2\left(x+3\right)+D\left(x-1\right)^3}{\left(x-1\right)^3\left(x+3\right)}\)
Thay x=1 và x=-3 vào hai tử số, ta được :
\(\begin{cases}x=1\rightarrow2=4A\rightarrow A=\frac{1}{2}\\x=-3\rightarrow10=-64D\rightarrow D=-\frac{5}{32}\end{cases}\)
Thay hai giá trị của A và D vào (*) và đồng nhất hệ số hai tử số, ta cso hệ hai phương trình :
\(\begin{cases}0=C+D\Rightarrow C=-D=\frac{5}{32}\\1=3A-3B+3C-D\Rightarrow B=\frac{3}{8}\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\)
Vậy :
\(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx=\)\(\left(\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\right)dx\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|x-1\right|-\frac{5}{32}\ln\left|x+3\right|+C\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|\frac{x-1}{x+3}\right|+C\)
Giải:
Ta có: \(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\Rightarrow\left(x-2\right).4=5.\left(2x-3\right)\)
\(\Rightarrow4x-8=10x-15\)
\(\Rightarrow4x-10x=8-15\)
\(\Rightarrow-6x=-7\)
\(\Rightarrow x=\frac{7}{6}\)
Vậy \(x=\frac{7}{6}\)
Giải :
Ta có : \(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\Rightarrow\left(x-2\right),4=5,\left(2x-3\right)\)
\(\Rightarrow4x-8=10x-15\)
\(\Rightarrow4x-10x=8-15\)
\(\Rightarrow-6x=-7\)
\(\Rightarrow x=\frac{7}{6}\)
Vậy \(x\) là \(\frac{7}{6}\)
câu B
a: =>10x=25
hay x=2,5
b: =>3x=7,65-3,15=4,5
hay x=1,5