K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

\(-3x+4\ge0\\ \Rightarrow-3x\ge-4\\ \Rightarrow x\le\dfrac{4}{3}\)

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

7 tháng 6 2017

a) \(\sqrt{2x+7}\)

Để \(\sqrt{2x+7}\) có nghĩa\(\Leftrightarrow\)2x+7\(\ge\)0

\(\Leftrightarrow\)2x\(\ge\)-7

\(\Leftrightarrow\)x\(\ge\)\(\dfrac{-7}{2}\)

b) \(\sqrt{-3x+4}\)

Để \(\sqrt{-3x+4}\) có nghĩa \(\Leftrightarrow\)-3x+4\(\ge\)0

\(\Leftrightarrow\)-3x\(\ge\)-4

\(\Leftrightarrow\)x\(\le\)\(\dfrac{4}{3}\)

c)\(\sqrt{\dfrac{1}{-1+x}}\)

Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa \(\Leftrightarrow\)\(\dfrac{1}{-1+x}\ge0\)

\(\Leftrightarrow\)-1+x>0

\(\Leftrightarrow\)x>1

d) \(\sqrt{1+x^2}\)

Ta có x2+1\(\ge\)1>0;\(\forall\)x\(\in R\)

Vậy x\(\in R\)

1 tháng 9 2019

Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0

Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)

\(9-12x+4x^2>0\)

\(\Rightarrow\left(2-2x\right)^2>0\)

\(\Rightarrow2-2x>0\)

\(\Rightarrow-2x>-2\)

\(\Rightarrow x< 1\)

Vậy để A có nghĩa thì \(x< 1\)

B) \(\sqrt{x+2\sqrt{x-1}}\ne0\)

\(x+2\sqrt{x-1}>0\)

\(\Rightarrow x-1+2\sqrt{x-1}+1>0\)

\(\Rightarrow\left(\sqrt{x-1}+1\right)^2>0\)

\(\sqrt{x-1}\ge0\Rightarrow x\ge1\)\(\)

Vậy \(x\ge1\)thì B có nghĩa

C) \(\sqrt{3x-2}.\sqrt{x-1}\ge0\)

\(\orbr{\begin{cases}3x-2\ge0\\x-1\ge0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge\frac{2}{3}\\x\ge1\end{cases}}\)

Vậy \(x\ge1\)thì C có nghĩa 

21 tháng 7 2019

a)  \(\frac{1}{\sqrt{9-12x+4x^2}}=\frac{1}{\sqrt{\left(2x-3\right)^2}}=\frac{1}{2x-3}\) 

để căn thức A có nghĩa \(\Rightarrow2x-3\ne0\Leftrightarrow x\ne\frac{3}{2}\) 

b)\(\frac{1}{\sqrt{x+2\sqrt{x}+1}}=\frac{1}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{1}{\sqrt{x}+1}\) 

để căn thức B có nghĩa =>  \(\sqrt{x}+1\ne0\) và  \(x\ge0\) hay  \(\sqrt{x}+1>1\Leftrightarrow x=0\) 

Vậy..........

1 tháng 8 2020

\(\frac{\sqrt{-3x}}{x^2-1}\)

Điều kiện để căn thức có nghĩa là :

\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)

27 tháng 10 2021

Trả lời:

\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)

\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2

Vậy với mọi x khác 2 thì căn thức có nghĩa