Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3
⇒Amin=−3⇒Amin=−3 khi x=2x=2
B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10
⇒Bmin=10⇒Bmin=10 khi x=−12x=−12
C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)
=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36
⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5
D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21
⇒Cmax=21⇒Cmax=21 khi x=−4x=−4
E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5
⇒Emax=5⇒Emax=5 khi x=2
Có : \(\left|x-1\right|\ge0\)
\(\left|x-2\right|\ge0\)
\(\left|x-3\right|\ge0\)
\(\Rightarrow B\ge0\)
Xét : \(\begin{cases}x-1=0\Rightarrow x=1\Rightarrow B=0+1+2=3\\x-2=0\Rightarrow x=2\Rightarrow B=1+0+1=2\end{cases}\)
Vậy \(Min_B=2\) tại \(x=2\)
a) \(x^2+2x>0\)
\(\Leftrightarrow x\left(x+2\right)>0\)
\(\Leftrightarrow\begin{cases}x>0\\x+2>0\end{cases}\) hoặc \(\begin{cases}x< 0\\x+2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>-2\end{cases}\) hoặc \(\begin{cases}x< 0\\x< -2\end{cases}\)
\(\Leftrightarrow x>0\) hoặc \(x< -2\)
b ) \(\left(3-x\right).\left(x-5\right)>0\)
\(\Leftrightarrow\begin{cases}3-x>0\\x-5>0\end{cases}\) hoặc \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x< 3\\x>5\end{cases}\) ( vô nghiệm ) hoặc \(\begin{cases}x>3\\x< 5\end{cases}\)
\(\Leftrightarrow3< x< 5\)
a)Để x2+2x dương
=>x2+2x>0
=>x(x+2)>0 suy ra x và x+2 cùng dấu
Xét \(\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\)\(\begin{cases}x>0\\x>-2\end{cases}\Rightarrow-2< x< 0\)
Xét \(\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\)\(\begin{cases}x< 0\\x< -2\end{cases}\)\(\Rightarrow-2< x< 0\)
Vậy ta mọi x thỏa mãn -2<x<0 đều đúng.
b)Để (3-x)(x-5) dương
=>(3-x)(x-5) >0
=>3-x và x-5 cùng dấu
Xét \(\begin{cases}3-x>0\\x-5>0\end{cases}\)\(\Rightarrow\begin{cases}x< 3\\x>5\end{cases}\)\(\Rightarrow5< x< 3\)(loại)
Xét \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)\(\Rightarrow\begin{cases}x>3\\x< 5\end{cases}\)
\(\Rightarrow3< x< 5\)(
Vậy với mọi giá trị của x thỏa mãn 3<x<5 đều đúng
\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)
1 - 2x = -(2x - 1)
= -(2x + 6 - 7)
= -(2x + 6) + 7
= -2(x + 3) + 7
Để B nguyên thì (1 - 2x) ⋮ (x + 3)
⇒ 7 ⋮ (x + 3)
⇒ x + 3 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ x ∈ {-10; -4; -2; 4}
ĐKXĐ : x khác -1
\(B=\frac{2x-1}{x+1}=\frac{2x+2-3}{x+1}=\frac{2\left(x+1\right)-3}{x+1}=2-\frac{3}{x+1}\)
Để B nguyên thì \(\frac{3}{x+1}\)nguyên
=> 3 chia hết cho x + 1
=> x + 1 thuộc Ư(3) = { ±1 ; ±3 }
=> x thuộc { 0 ; -2 ; 2 ; -4 }