Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2x>0\)
\(\Leftrightarrow x\left(x+2\right)>0\)
\(\Leftrightarrow\begin{cases}x>0\\x+2>0\end{cases}\) hoặc \(\begin{cases}x< 0\\x+2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>-2\end{cases}\) hoặc \(\begin{cases}x< 0\\x< -2\end{cases}\)
\(\Leftrightarrow x>0\) hoặc \(x< -2\)
b) \(\left(3-x\right)\left(x-5\right)>0\)
\(\Leftrightarrow\begin{cases}3-x>0\\x-5>0\end{cases}\) hoặc \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x< 3\\x>5\end{cases}\) (vô nghệm) hoặc \(\begin{cases}x>3\\x< 5\end{cases}\)
\(\Leftrightarrow3< x< 5\)
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}-\frac{x+11}{15}-\frac{x+11}{16}=0\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Mà \(\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)\ne0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
Hai biểu thức sau là biểu thức phân số
Biểu thức đầu là biểu thức nguyên
b)\(B=\frac{x^2-3x+7}{x-3}=\frac{x\left(x-3\right)+7}{x-3}=x+\frac{7}{x-3}\)
\(\Rightarrow B\in Z\Leftrightarrow x+\frac{7}{x-3}\in Z\Leftrightarrow x\in Z,\frac{7}{x-3}\in Z\Leftrightarrow7⋮x-3\Leftrightarrow x-3\inƯ\left\{7\right\}\)
\(\Rightarrow x-3\in\left\{-1;-7;1;7\right\}\)
\(\Rightarrow x\in\left\{2;-4;4;10\right\}\)
c)\(C=\frac{x^2+1}{x-1}=\frac{x^2-1+2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+2}{x-1}=\left(x+1\right)+\frac{2}{x-1}\)
\(\Rightarrow C\in Z\Leftrightarrow\left(x+1\right)+\frac{2}{x-1}\in Z\Leftrightarrow x-1\in Z;\frac{2}{x-1}\in Z\)
\(\Leftrightarrow x\in Z;2⋮x-1\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{-1;-2;1;2\right\}\)
\(\Rightarrow x\in\left\{0;-1;2;3\right\}\)
a)(|x-2|-3)(5+|x|)=0
<=>|x-2|-3=0 hoặc 5+|x|=0
*)Xét |x-2|-3=0 <=>|x-2|=3
=>x-2=±3
Với x-2=3 =>x=5
Với x-2=-3 =>x=-1
*)Xét 5+|x|=0
=>|x|=-5 (mà \(\left|x\right|\ge0>-5\) với mọi x)
=>vô nghiệm
(2x-1)2=1-2x
<=>4x2-4x+1=1-2x
<=>4x2-2x=0
<=>2x(2x-1)=0
<=>x=0 hoặc x=\(\frac{1}{2}\)
a) \(x^2+2x>0\)
\(\Leftrightarrow x\left(x+2\right)>0\)
\(\Leftrightarrow\begin{cases}x>0\\x+2>0\end{cases}\) hoặc \(\begin{cases}x< 0\\x+2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>-2\end{cases}\) hoặc \(\begin{cases}x< 0\\x< -2\end{cases}\)
\(\Leftrightarrow x>0\) hoặc \(x< -2\)
b ) \(\left(3-x\right).\left(x-5\right)>0\)
\(\Leftrightarrow\begin{cases}3-x>0\\x-5>0\end{cases}\) hoặc \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x< 3\\x>5\end{cases}\) ( vô nghiệm ) hoặc \(\begin{cases}x>3\\x< 5\end{cases}\)
\(\Leftrightarrow3< x< 5\)
a)Để x2+2x dương
=>x2+2x>0
=>x(x+2)>0 suy ra x và x+2 cùng dấu
Xét \(\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\)\(\begin{cases}x>0\\x>-2\end{cases}\Rightarrow-2< x< 0\)
Xét \(\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\)\(\begin{cases}x< 0\\x< -2\end{cases}\)\(\Rightarrow-2< x< 0\)
Vậy ta mọi x thỏa mãn -2<x<0 đều đúng.
b)Để (3-x)(x-5) dương
=>(3-x)(x-5) >0
=>3-x và x-5 cùng dấu
Xét \(\begin{cases}3-x>0\\x-5>0\end{cases}\)\(\Rightarrow\begin{cases}x< 3\\x>5\end{cases}\)\(\Rightarrow5< x< 3\)(loại)
Xét \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)\(\Rightarrow\begin{cases}x>3\\x< 5\end{cases}\)
\(\Rightarrow3< x< 5\)(
Vậy với mọi giá trị của x thỏa mãn 3<x<5 đều đúng