Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
|2x - 1| \(\ge\)0
=> 5 - |2x - 1| \(\le\)5
Dấu "=" xảy ra khi và chỉ khi:
2x - 1 = 0 <=> 2x = 1 <=> x = 1/2
Vậy GTLN của A là 5 <=> x = 1/2.
2. Ta có: |x - 2| \(\ge\)0
=> |x - 2| + 3 \(\ge\) 3
=> 1/|x - 2| + 3 \(\le\)1/3
Dấu "=" xảy ra khi và chỉ khi:
x - 2 = 0 <=> x = 2
Vậy GTLN của B là 1/3 <=> x = 2.
P=\(\frac{2.\left|x\right|-1+4}{2.\left|x\right|-1}\)=1+\(\frac{4}{2.\left|x\right|-1}\)
1, Để P có GTLN thì 2.|x| -1 phải dương và có GTNN
Mà |x|>=0 với mọi x nên 2.|x| >=0
=> 2.|x| -1 có giá trị dương nhỏ nhất là 1 khi x=1 hoặc x= -1
=> GTLN của P =1 + 4/1 =1+4=5 khi x=1 hoặc x= -1
2, Đẻ P là số tự nhiên thì \(\frac{4}{2.\left|x\right|-1}\)là số tự nhiên
=> 2.|x| -1 là ước của 4
từ đó tìm ra x
A = |\(x\) + 19| + 1980
|\(x\) + 19| ≥ 0 \(\forall\) \(x\)
|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)
A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19
Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19
B = |\(x\) + 20| + |y - 21| + 2020
|\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y
B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020
B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)
Bmin = 2020 khi (\(x;y\)) = (-20; 21)
1) Vì l 1/2-x l \(\ge0\) nên A đạt giá trị nhỏ nhất khi l 1/2-x l = 0
=> 1/2 -x =0 => x=1/2
2) Để B lớn nhất thì l 2x+2/3 l nhỏ nhất
=> l 2x + 2/3 l = 0
=> 2x + 2/3 = 0
=> 2x = -2/3
=> x = -1/3
1) ta có I 1/2 -xI\(\ge\)0
=>A=0,6+I 1/2 -xI\(\ge\)0,6
Dấu = xảy ra khi 1/2-x=0
x=1/2
Vậy GTNN của A là 0,6 tại x=1/2
2) ta có I2x+2/3I\(\ge\)0
=>-I2x+2/3I\(\le\)
=>B=2/3-I2x+2/3I\(\le\)2/3
Dấu = xảy ra khi 2x+2/3=0
2x =-2/3
x =-2/3:2
x =-1/3
Vậy GTLN của B là 2/3 tại x=-1/3