\(\frac{5}{\sqrt{2x+1}+2}\)

giúp mik nhanh nhan với cá...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

a) Để biểu thức đạt giá trị nguyên thì :

   \(4⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;4;-4\right\}\)

Lập bảng :

   

\(x+1\)\(1\)\(-1\)\(4\)\(-4\)
\(x\)\(0\)\(-2\)\(3\)\(-5\)

Vậy \(x\in\left\{0;-2;3;-5\right\}\)

19 tháng 8 2021

x = 1 nha bạn mình đangtìm lời giải

5 tháng 11 2024

          Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                        Giải: 

         20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\)  (\(x\) \(\in\) N)

    \(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) \(\dfrac{10}{7}\)\(x\) 

      \(x\) = \(\left(\dfrac{10}{7}\right)^x\)\(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)

          Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)

          Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)

          Nếu \(x\) > 1 ta có:  \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên 

                   \(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\)  (loại)

Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.

Vậy \(x\) = 1 

                   

19 tháng 7 2018

ồ cuk khó nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
10 tháng 8 2020

Bài làm:

a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)

\(=-\frac{1}{5}x^6y^3z^3\)

b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:

\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)

10 tháng 8 2020

a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)

b) Với x = -1 ; y = -2 , z = 3

Thế vào ba đơn thức trên và đơn thức tích ta được :

\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)

\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)

\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)

\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)

21 tháng 4 2018

a) Để \(P_{\left(x\right)}\in z\)

\(\Rightarrow\frac{2}{4-x}\in z\)

\(\Rightarrow2⋮4-x\Rightarrow4-x\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 4-x = 2 => x=2 (TM)

      4-x  = -2 => x = 6 (TM)

      4-x  = 1 => x=3 (TM) 

     4 -x  = -1 => x = 5 (TM)

KL: x = ....

b) ta có: \(\frac{3x+9}{x-4}=\frac{3x-12+21}{x-4}=\frac{3.\left(x-4\right)+21}{x-4}=\frac{3.\left(x-4\right)}{x-4}+\frac{21}{x-4}=3+\frac{21}{x-4}\)

để A(x) nhận giá trị nguyên

\(\Rightarrow\frac{21}{x-4}\in z\)

\(\Rightarrow21⋮x-4\Rightarrow x-4\inƯ_{\left(21\right)}=\left(1;-1;3;-3;7;-7\right)\)

nếu x -4 = 1 => x= 5 (TM)

     x -4  = -1 => x = 3 ( TM)

  x -4    = 3 => x = 4 (TM)

  x -4   = -3 => x = 1 (TM)

   x  - 4 = 7 => x=11 (TM)

  x - 4   = -7 => x = -3 (TM)

KL: x= ....

c) ta có: \(\frac{6x+5}{2x+1}=\frac{6x+3+2}{2x+1}=\frac{3.\left(2x+1\right)+2}{2x+1}=\frac{3.\left(2x+1\right)}{2x+1}+\frac{2}{2x+1}\)

Để B(x) nhận giá trị nguyên

\(\Rightarrow\frac{2}{2x+1}\in z\)

\(\Rightarrow2⋮2x+1\Rightarrow2x+1\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 2x + 1 = 2 => 2x = 1 => x =1/2 ( loại)

      2x +1  = -1 => 2x = -2 => x = -1 (TM)

     2x +1   = -2 => 2x = -3 => x = -3/2 ( loại)

    2x +1  = 1 => 2x = 0 => x =0 (TM)

KL: x =...

d) ta có: \(\frac{5-x}{x-2}=\frac{-x+5}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=\frac{-\left(x-2\right)}{x-2}+\frac{3}{x-2}=\left(-1\right)+\frac{3}{x-2}\)

Để E(x) nhận giá trị nguyên

\(\Rightarrow\frac{3}{x-2}\inℤ\)

\(\Rightarrow3⋮x-2\Rightarrow x-2\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x -2 = 3 => x =5 (TM)

    x -2   = -3 => x = -1 (TM)

   x -2    = 1 => x =3 (TM)

   x -2   = -1 => x = 1 (TM)

KL: x= ....

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

4 tháng 3 2020

Thay x =2 ; y= -1 vào biểu thức ta có:

  16.2.(-1)^5 - 2.2^3.(-1)

=16.2.(-1) - 2.1/8

=-32 - 1/4

=-129/4

vậy...........................

học tốt!

4 tháng 3 2020

cám ơn bạn