Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
\(\Rightarrow P\in Z\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)
\(\Rightarrow n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
\(\frac{2n-1}{n-1}\in Z\)
\(\Rightarrow2n-1⋮n-1\)
\(\Rightarrow\left(2n-1\right)-\left(n-1\right)⋮\left(n-1\right)\)
\(\Rightarrow2⋮\left(n-1\right)\)
Bảng:
n-1 | -1 | 1 | 2 | -2 |
n | 0 | 2 | 3 | -1 |
Vậy \(n\in\left\{0;-1;2;3\right\}\)
\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\)
Để P nguyên thì n-1 thuộc Ư(1)={1;-1}
Ta có: n-1=1 => n=2
n-1=-1 => n=0
Vậy n={2;0}
TA CÓ:\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\)
Để P nguyên thì n-1 thuộc Ư(1)={1;-1}
T/hợp 1: n-1=1
Thì n=1+1=2
T/hợp 2: n-1=-1 =>n=0
Vậy n{2;0}
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
Gọi biểu thức trên là A
Ta có
\(A=\frac{n^3-2n^2+3}{n-2}\)
\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)
Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)
Vậy ta có:
\(n-2=-3\\ \Rightarrow n=-1\)
\(n-2=-1\\ \Rightarrow n=1\)
\(n-2=1\\ \Rightarrow n=3\)
\(n-2=3\\ \Rightarrow n=5\)
Câu 1:
Để A nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
Có 3n - 3 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}
Câu 2:
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)=2^{18}.7\)
\(=2^{16}.2^2.7\)
\(=2^{16}.14\)chia hết cho 14
=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.