K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

\(\dfrac{x-3}{13}+\dfrac{x-3}{14}=\dfrac{x-3}{15}+\dfrac{x-3}{16}\)

\(\Leftrightarrow\dfrac{1680.\left(x-3\right)+1560.\left(x-3\right)-1456.\left(x-3\right)-1365.\left(x-3\right)}{21840}=0\)

\(\Leftrightarrow\left(x-3\right).\left(1680+1560-1456-1365\right)=0\)

\(\Leftrightarrow\left(x-3\right).419=0\)

\(\Leftrightarrow419x=1257\)

\(\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

\(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)

\((x-3)\left(\frac{1}{13}+\frac{1}{14}\right)=(x-3)\left(\frac{1}{15}+\frac{1}{16}\right)\)

\((x-3)\left[\left(\frac{1}{13}+\frac{1}{14}\right)-\left(\frac{1}{15}+\frac{1}{16}\right)\right]=0\)

Ta thấy:

\(\frac{1}{13}>\frac{1}{15}; \frac{1}{14}>\frac{1}{16}\Rightarrow \frac{1}{13}+\frac{1}{14}> \frac{1}{15}+\frac{1}{16}\)

Do đó biểu thức trong ngoặc vuông lớn hơn $0$ hay khác $0$

$\Rightarrow x-3=0$

$\Leftrightarrow x=3$

16 tháng 6 2019

câu a) mình chịu (dùng kiến thức lớp 12 chắc làm đc haha)

b) gt ⇒ \(\frac{1}{6}.6^{x+2}-6^x=6^{14}-6^{13}\)

\(6^{x+1}-6^x=6^{14}-6^{13}\)

\(6^x\left(6-1\right)=6^{13}\left(6-1\right)\)

\(x=13\)

c) gt ⇒ \(\frac{1}{2}.2^{x+4}-2^x=2^{13}-2^{10}\)

\(2^{x+3}-2^x=2^{13}-2^{10}\)

\(2^x\left(2^3-1\right)=2^{10}\left(2^3-1\right)\)

\(x=10\)

d) gt ⇒ \(\frac{1}{3}.3^{x+4}-4.3^x=3^{16}-4.3^{13}\)

\(3^{x+3}-4.3^x=3^{16}-4.3^{13}\)

\(3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)

\(x=13\)

15 tháng 6 2019

câu d chưa có đóng ngoặc kìa bn

30 tháng 8 2017

\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)

\(\Rightarrow\dfrac{x-1}{50}-1+\dfrac{x-2}{49}-1=\dfrac{x-3}{48}-1+\dfrac{x-4}{47}-1\)

\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}=\dfrac{x-51}{48}+\dfrac{x-51}{47}\)

\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}-\dfrac{x-51}{48}-\dfrac{x-51}{47}=0\)

\(\Rightarrow\left(x-51\right)\left(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\right)=0\)

\(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\ne0\) nên \(x-51=0\Rightarrow x=51\)

\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)

\(\Rightarrow\dfrac{x+25}{6}+1+\dfrac{x+20}{11}+1+\dfrac{x+16}{15}+1=0\)

\(\Rightarrow\dfrac{x+31}{6}+\dfrac{x+31}{11}+\dfrac{x+31}{15}=0\)

\(\Rightarrow\left(x+31\right)\left(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\right)=0\)

\(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\ne0\) nên \(x+31=0\Rightarrow x=-31\)

\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)

\(\Rightarrow\dfrac{x-15}{6}-1+\dfrac{x-10}{11}-1=\dfrac{x-3}{18}-1+\dfrac{x-7}{14}-1\)

\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}=\dfrac{x-21}{18}+\dfrac{x-21}{14}\)

\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}-\dfrac{x-21}{18}-\dfrac{x-21}{14}=0\)

\(\Rightarrow\left(x-21\right)\left(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\right)=0\)

\(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\ne0\) nên \(x-21=0\Rightarrow x=21\)

30 tháng 8 2017

lần sau nhớ ghi rõ các phần ra , nhìn thek này phân biệt hơi khó :v

NV
15 tháng 6 2019

a/ \(\frac{1}{3}.3^x+3^{x+2}=3^{16}+3^{13}\)

\(\Leftrightarrow3^{x-1}+3^{x+2}=3^{13}+3^{16}\)

\(\Leftrightarrow3^{x-1}\left(1+3^3\right)=3^{13}\left(1+3^3\right)\)

\(\Leftrightarrow3^{x-1}=3^{13}\Rightarrow x-1=13\Rightarrow x=14\)

b/ \(\frac{1}{6}6^x+6^{x+2}=6^{15}+6^{18}\)

\(\Leftrightarrow6^{x-1}+6^{x+2}=6^{15}+6^{18}\)

\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^{15}\left(1+6^3\right)\)

\(\Rightarrow x=16\)

c/ \(\frac{1}{2}2^{x+3}-2^x=2^{22}-2^{20}\)

\(\Leftrightarrow2^x\left(2^2-1\right)=2^{20}\left(2^2-1\right)\)

\(\Rightarrow x=20\)

13 tháng 7 2017

Các câu dễ tự làm :v

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

18 tháng 7 2018

\(a,x^2=16\)

\(x^2=4^2=\left(-4\right)^2\)

\(x=2\) hoặc \(x=-2\)

\(b,x^3=-8\)

\(x^3=\left(-2\right)^3\)

\(x=-2\)

\(c,\left(x+2\right)^2=4\)

\(\left(x+2\right)^2=2^2=\left(-2\right)^2\)

\(x+2=2\Rightarrow x=0\) hoặc \(x+2=-2\Rightarrow x=-4\)

\(d,\left(1-x\right)^3=1\)

\(1-x=1\)

\(x=0\)

e,phần này mk chưa nghĩ ra,sorry bn nha!

16 tháng 6 2018

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

=> x+1=0

<=> x=-1

b) \(\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

<=> \(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

đến đây tương tự a

16 tháng 6 2018

a) Ta có:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\left(Vì:\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

Vậy....

b)Sửa lại đề nha

Ta có:

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Leftrightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

Lý giải tương tự câu a và kết luận nha

16 tháng 7 2017

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}>\dfrac{1}{14}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Chúc bạn học tốt!!!

16 tháng 7 2017

Giải:

a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow x+1\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Dấu "=" xảy ra:

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}=0\end{matrix}\right.\)

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b) \(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\left(\dfrac{1}{3}-\dfrac{2}{9}\right)+\left(-\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}\right)+\dfrac{1}{64}\)

\(=\left(\dfrac{3}{9}-\dfrac{2}{9}\right)+\left(-\dfrac{27}{36}-\dfrac{1}{36}\right)+\left(\dfrac{9}{15}+\dfrac{1}{15}\right)+\dfrac{1}{64}\)

\(=\dfrac{1}{9}-\dfrac{7}{9}+\dfrac{2}{3}+\dfrac{1}{64}=0+\dfrac{1}{64}=\dfrac{1}{64}\)

Chúc bạn học tốt!

21 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

21 tháng 8 2017

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy x = -1

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Vậy...

a) Ta có:

\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)

\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)

Mà ta có:

\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)

\(\Rightarrow x+11=0\Rightarrow x=-11\)

Ta có:

\(A=1+x+x^2+x^3+...+x^{100}\)

Đặt \(B=x+x^2+x^3+...+x^{100}\)

\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)

\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)

\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)

\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)

\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)