Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5x - 7(3 - x) = 3
=> 5x - 21 + 7x = 3
=> 12x = 24
=> x = 2
b, 4x2 + 3x = 0
=> x(4x + 3) = 0
=> \(\orbr{\begin{cases}x=0\\4x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{-3}{4}\end{cases}}\)
c, (x + 1)2 - 4x2 =0
=> (x + 1)2 - (2x)2 = 0
=> (x + 1 - 2x)(x + 1 + 2x) = 0
=> (1 - x)(3x+ 1) = 0
=> \(\orbr{\begin{cases}1-x=0\\3x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
d, x3 - 19x - 30 = 0
=> x3 - 5x2 + 5x2 - 25x + 6x - 30 = 0
=> x2(x - 5) + 5x(x - 5) + 6(x - 5) = 0
=> (x2 + 5x + 6)(x - 5) = 0
=> (x2 + 2x + 3x + 6)(x - 5) = 0
=> (x + 2)(x + 3)(x - 5) = 0
=> x + 2 = 0 hoặc x + 3 = 0 hoặc x - 5 = 0
=> x = -2 hoặc x = -3 hoặc x = 5
=> x thuộc {-2; -3; 5}
a)\(6x^2+5x-6=0\)
\(\Leftrightarrow6x^2-4x+9x-6=0\)
\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
b)\(6x^2-13x+6=0\)
\(\Leftrightarrow6x^2-4x-9x+6=0\)
\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
c)\(10x^2-13x-3=0\)
\(\Leftrightarrow10x^2-15x+2x-3=0\)
\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)
d)\(20x^2+19x-3=0\)
\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)
\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)
e)\(3x^2-x+6=0\)
\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)
Suy ra vô nghiệm
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
a) \(2x^2+3x-8=0\)
Ta có: \(\Delta=3^2+4.2.8=73\)
pt có 2 nghiệm
\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)
d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)
Đặt \(x^2+2x=t\)
\(pt\Leftrightarrow t^2-2t-3=0\)
Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)
pt trên có 2 nghiệm
\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)
\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)
\(\Rightarrow x\in\left\{-3;-1;1\right\}\)
c) \(x^4+8x^3+19x^2+12x=0\)
\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)
\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)
\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
Bài làm :
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) Sửa đề : 5x3 + x2 - 4x + 9 = 0
<=>( 5x3 + 5 ) + (x2 - 4x +4)=0
<=> 5(x3 + 1) + (x-2)2 = 0
<=> 5(x+1)(x2 - x +1) + (x+2)2 =0
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = -3 hoặc x = 2
a) x3 - 19x - 30 = 0
\(\Leftrightarrow\)x3 + 5x2 + 6x - 5x2 - 25x - 30 = 0
\(\Leftrightarrow\)(x - 5)(x2 + 5x + 6) = 0
\(\Leftrightarrow\)(x - 5)(x2 + 2x + 3x + 6) = 0
\(\Leftrightarrow\)(x - 5)(x + 2)(x + 3) = 0
\(\Leftrightarrow\)x - 5 = 0 x = 5
hoặc x + 2 = 0 \(\Leftrightarrow\) x = -2
hoặc x + 3 = 0 x = -3
Vậy x = { -3; -2; 5 }
b) x(x + 4)(x + 6)(x + 10) + 128 = 0
\(\Leftrightarrow\)(x2 + 10x)(x2 + 10x + 24) + 128 = 0
Đặt x2 + 10x = y; ta có
y(y + 24) + 128 = 0
\(\Leftrightarrow\)y2 + 24y + 144 - 16 = 0
\(\Leftrightarrow\)(y + 12)2 - 16 = 0
\(\Leftrightarrow\)(y + 12 - 4)(y + 12 + 4) = 0
\(\Leftrightarrow\)(y + 8)(y + 16) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}y+8=0\\y+16=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-8\\y=-16\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2+10x=-8\\x^2+10x=-16\end{cases}}\)