Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,TH1:x-2021=0=>x=2021\)
\(Th2:x-2022=0=>x=2022\)
Vậy \(x\in\left\{2021;2022\right\}\)
\(b,x\left(8-5\right)=1080\)
\(x.3=1080\)
\(x=360\)
\(c,x^3=216< =>6^3=216=>x=3\)
\(d,5^5=3125\)
a) ( x- 2021) * ( x- 2022) = 0
=> \(\orbr{\begin{cases}x-2021=0\\x-2022=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2021\\x=2022\end{cases}}}\)
b) b. 8x - 5x = 2022
=> 3x = 2022
=> x = 674
c) \(5\cdot x^3=1080\)
=> \(x^3=216\)
=> \(x^3=6^3\)
=> x = 6
d) \(5^x=3125\)
=> \(5^x=5^5\)
=> x = 5
3. (x+5) - 4.(x+7)=20
3x +15-4x-28 . =20
-x . =20+28-15
-x . =33
x. -33
3(x+5)-4(x+7)=20
<=> 3x+15-4x-28=20
<=> -x-13=20
<=> x+13=-20
<=> x=-33
5/7:x=1/6-4/5
5/7:x=-19/30
x=5/7:(-19/30)
x=-150/133
vậy x=-150/133
a) \(\left(x-5\right)-\frac{1}{3}=\frac{2}{5}\)
\(\Rightarrow\left(x-5\right)=\frac{2}{5}+\frac{1}{3}\)
\(\Rightarrow\left(x-5\right)=\frac{11}{15}\)
\(\Rightarrow x-5=\frac{11}{15}\)
\(\Rightarrow x=\frac{11}{15}+5\)
\(\Rightarrow x=\frac{86}{15}\)
b) \(\frac{2}{3}\cdot x-\frac{3}{2}\cdot x=\frac{5}{12}\)
\(\Rightarrow x\cdot\left(\frac{2}{3}-\frac{3}{2}\right)=\frac{5}{12}\)
\(\Rightarrow x\cdot\left(-\frac{5}{6}\right)=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:\left(-\frac{5}{6}\right)\)
\(\Rightarrow x=-\frac{1}{2}\)
c) \(-\frac{2}{3}\cdot x+\frac{1}{5}=\frac{3}{10}\)
\(\Rightarrow-\frac{2}{3}\cdot x=\frac{3}{10}-\frac{1}{5}\)
\(\Rightarrow-\frac{2}{3}\cdot x=\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{10}:\left(-\frac{2}{3}\right)\)
\(\Rightarrow x=-\frac{3}{20}\)
d) \(4-\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=-\frac{1}{5}\)
\(\Rightarrow\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=4-\left(-\frac{1}{5}\right)\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x+\frac{3}{4}=\frac{21}{5}\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{21}{5}-\frac{3}{4}\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{69}{20}\)
\(\Rightarrow\)\(x=\frac{69}{20}:\frac{1}{2}\)
\(\Rightarrow\)\(x=\frac{69}{10}\)
\(\text{Ta có: }\) \(\frac{1}{4}x+\frac{1}{8}x+\frac{1}{16}x=1\)
\(\Rightarrow\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)x=1\)
\(\Rightarrow\frac{7}{16}x=1\)
\(\Rightarrow x=1:\frac{7}{16}\)
\(\Rightarrow x=\frac{16}{7}\)
Tìm x :
a, 1/4 * x + 1/8 * x + 1/16 * x = 1
x * ( 1/4 + 1/8 + 1/16 ) = 1
x * 7/16 = 1
x = 1 : 7/16
x = 16/7
b, 1/5 + 1/3 x ( x + 1 ) = 1/4
1/3 x ( x + 1 ) = 1/4 - 1/5
1/3 x ( x + 1 ) = 1/20
x + 1 = 1/20 : 1/3
x + 1 = 3/20
x = 1 - 3/20
x = 7/20
Tính nhanh :
1/5 x 27 + 1/5 x 33 + 1/5 x 40
= 1/5 x ( 27 + 33 + 40 )
= 1/5 x 100
= 20
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2008}{2010}.\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2010}\)
=> x + 1 = 2010
=> x = 2009
Ta có : \(\frac{2}{2\times3}+\frac{2}{3\times4}+....+\frac{2}{x\times\left(x+1\right)}=\frac{2008}{2010}\)
\(\Rightarrow2\times\left(\frac{1}{2\times3}+.....+\frac{1}{x\times\left(x+1\right)}\right)=\frac{1004}{1005}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}=\frac{1}{2010}\)
\(\Rightarrow x+1=2010\)
\(\Rightarrow x=2010-1=2009\)
\(\dfrac{4-x}{-5}=\dfrac{-5}{4-x}\)
\(\Leftrightarrow\left(4-x\right)\left(4-x\right)=-5\times-5\)
\(\Rightarrow\left(4-x\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}4-x=5\\4-x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
\(\dfrac{4-x}{-5}=\dfrac{-5}{4-x}\)
\(\Rightarrow\left(4-x\right).\left(4-x\right)=\left(-5\right).\left(-5\right)\)
\(\Rightarrow\left(4-x\right)^2=25\)
\(\Rightarrow\left(4-x\right)^2=5^2\)
\(\Rightarrow4-x=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}4-x=5\\4-x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4-5\\x=4-\left(-5\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\)