Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4
x/2=y/3 va x.y=54
bài giải
Đặt x/2= y/3=k
=>x=2k,y=3k
=>2k.3k=54
6.k^2=54
=>k^2=54:6
=>k^2=9
=>k=3 hoặc k=-3
Với k=3 thĩ=6; y=9
Với k=-3 thì x=-6; y=-9
Vậy các cặp (x,y) thỏa mản (6,9):(-6<-9)
Nếu sai thi bảo tớ nhé
câu 1: Câu hỏi của Vương Ái Như - Toán lớp 7 - Học toán với OnlineMath
câu 2:
Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}.\left(2^4-2\right)=2^{17}.14⋮14\)
câu 3:
\(4x=7y=3x\Rightarrow\frac{4x}{84}=\frac{7y}{84}=\frac{3z}{84}\Rightarrow\frac{x}{21}=\frac{y}{12}=\frac{z}{28}=\frac{x+y+z}{21+12+28}=\frac{61}{61}=1\)
\(\Rightarrow x=21,y=12,z=28\)
câu 4:
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60,b=9.5=45,c=8.5=40\)
\(\left[\frac{-2}{5}x^3.\left(2x-1\right)^m+\frac{2}{5}x^{m+3}\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left[\frac{2}{5}x^3\left(2x+1\right)^m+\frac{2}{5}x^3.\left(\frac{2}{5}\right)^m\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[\left(2x+1\right)^m+\left(\frac{2}{5}\right)^m\right]\right\}:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[2x+\frac{7}{5}\right]^m\right\}:\frac{-2}{5}x^3\)
\(=-\left(2x+\frac{7}{5}\right)^m\)
đến đây thì mình chịu
a) Ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=5x\left(3x-1\right)+7\left(3x-1\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)
\(\Leftrightarrow15x^2-15x^2+3x+10x+5x-21x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) Ta có: \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=2x\left(0,5x+2\right)+\left(0,5x+2\right)\)
\(\Leftrightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)
\(\Leftrightarrow x^2-x^2+3x+x-4x-0,5x=2-3\)
\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\)
Vậy x = 2
bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y
\)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )
a, Điều kiện: 3x - 2 ≥ 0 => 3x ≥ 2 => x ≥ 2/3
Ta có: |2x + 1| = 3x - 2
\(\Rightarrow\orbr{\begin{cases}2x+1=3x-2\\2x+1=2-3x\end{cases}}\Rightarrow\orbr{\begin{cases}2x-3x=-2-1\\2x+3x=2-1\end{cases}}\Rightarrow\orbr{\begin{cases}-x=-3\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}(lọai)\end{cases}}\)
Vậy x = 3
b, \(\frac{5}{x}=\frac{x}{25}\)\(\Rightarrow x^2=5.25\)\(\Rightarrow x^2=125\)\(\Rightarrow\orbr{\begin{cases}x=5\sqrt{5}\\x=-5\sqrt{5}\end{cases}}\)
a,|2x+1| = 3x-2 (1)
Ta có \(\left|2x+1\right|\ge0\forall x\)
=> 3x - 2 \(\ge0\)
\(\Rightarrow3x\ge2\)
\(\Rightarrow x\ge\frac{2}{3}>0\)
\(\Rightarrow2x>0\)
\(\Rightarrow2x+1>1>0\)
\(\Rightarrow\left|2x+1\right|=2x+1\) (2)
Từ (1) và (2) => \(2x+1=3x-2\)
\(\Rightarrow3x-2x=1+2\)
\(\Rightarrow x=3\)
Vậy x = 3
b, \(\frac{5}{x}=\frac{x}{25}\)
\(\Rightarrow x^2=25.5=125\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{25}\\x=-\sqrt{25}\end{cases}}\)
Vậy \(x\in\left\{\sqrt{25};-\sqrt{25}\right\}\)
P/ s: Câu a là làm theo cách ngu học của mình
Có sai thì thông cảm