Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
x2 - 5x = 0
=> x(x - 5) = 0
=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
b) (3x - 5)2 - 4 = 0
=> (3x - 5)2 = 0 + 4
=> (3x - 5)2 = 4
=> (3x - 5)2 = 22
=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)
=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-1\right)\left(x+1\right)+3x=2\)
\(\Leftrightarrow x^3+8-x\left(x^2-1\right)+3x-2=0\)
\(\Leftrightarrow x^3-x^3+x+3x+6=0\)
\(\Leftrightarrow4x+6=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
Vậy....
b) \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy....
\(a.\left(4x-3\right)^2-\left(2x+1\right)^2=0\\\Leftrightarrow \left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\\\Leftrightarrow \left(2x-4\right)\left(6x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{3}\right\}\)
\(b.\left(3x-1\right)\left(2x-5\right)=\left(3x-1\right)\left(x+2\right)\\ \Leftrightarrow\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{7;\frac{1}{3}\right\}\)
\(c.\left(x+6\right)\left(x-1\right)=2\left(x-1\right)\\ \Leftrightarrow\left(x+6\right)\left(x-1\right)-2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-4\right\}\)
\(d.\left(x-1\right)^2=4\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;-1\right\}\)
\(e.3x-12=5x\left(x-4\right)\\ \Leftrightarrow3\left(x-4\right)=5x\left(x-4\right)\\ \Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-5x=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{4;\frac{3}{5}\right\}\)
\(f.x^2-1=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-1\right\}\)
a) \(2x^3+5x^2-3x=0\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
b) \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^3+5x^2-3x=0\)
Vậy $\orpt{\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}}$ (Giải câu a)
c) \(x^3-12=13x\Leftrightarrow x^3-13x-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-12\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}\right.\)
Vậy $\orpt{\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}}$
d) \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)
\(ĐK:3x^2-7x+2\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)
=> 3x2 + 5x + 2 =0
<=> 3x2 + 3x + 2x +2 = 0
<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0
<=> ( x + 1 )(3x + 2 ) =0
<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = -2/3
b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)
<=> 2x2+ 10x + 12 = 0
<=> x2 + 5x+ 6 =0
<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\)
Vậy x = -3
c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)
<=> x3 + x2 -x -1 =0
<=> ( x - 1 )(x2 + 2x + 1 )
<=> ( x-1 ) (x+1)2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = { 1 ; -1 }
a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)
<=> 3x^2 + 5x - 2 = 0
<=> (3x - 1)(x + 2) = 0
<=> 3x - 1 = 0 hoặc x + 2 = 0
<=> 3x = 1 hoặc x = -2
<=> x = 1/3 (ktm) hoặc x = -2 (tm)
=> x = -2
b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)
<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)
<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)
<=> 2(x + 3) = 0
<=> x + 3 = 0
<=> x = -3
c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)
<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)
<=> (x + 1)(x - 1) = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
\(a,\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)