Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
b: =>(3x-1)(3x+1)(2x+3)=0
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)
=>2x-1/3=19/12 hoặc 2x-1/3=-19/12
=>2x=23/12 hoặc 2x=-15/12=-5/4
=>x=23/24 hoặc x=-5/8
d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)
=>-5/6x=-3/2
=>x=3/2:5/6=3/2*6/5=18/10=9/5
e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4
=>2/5x=5/4 hoặc 2/5x=-1/4
=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8
f: =>14x-21=9x+6
=>5x=27
=>x=27/5
h: =>(2/3)^2x+1=(2/3)^27
=>2x+1=27
=>x=13
i: =>5^3x*(2+5^2)=3375
=>5^3x=125
=>3x=3
=>x=1
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a: Đặt A=0
=>-2/3x=5/9
hay x=-5/6
b: Đặt B(x)=0
=>(x-2/5)(x+2/5)=0
=>x=2/5 hoặc x=-2/5
c: Đặt C(X)=0
\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)
\(\Leftrightarrow x^3=-\dfrac{8}{27}\)
hay x=-2/3
Bài 1:
\((1-2x)^2=9=3^2=(-3)^2\)
\(\Rightarrow \left[\begin{matrix} 1-2x=3\\ 1-2x=-3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=2\end{matrix}\right.\)
Bài 2:
\((x+5)^3=-64=(-4)^3\)
\(\Rightarrow x+5=-4\Rightarrow x=-9\)
Bài 3:
\((3x-5)^2=16=4^2=(-4)^2\)
\(\Rightarrow \left[\begin{matrix} 3x-5=4\\ 3x-5=-4\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=\frac{1}{3}\end{matrix}\right.\)
Bài 4:
\((x-1)^3=27=3^3\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
Bài 5:
\(x^2+x=0\Leftrightarrow x(x+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=-1\end{matrix}\right.\)
Bài 6:
\(5^{x+2}=625=5^4\)
\(\Rightarrow x+2=4\Rightarrow x=2\)
a) ( x + 5 )3 = -64
x + 5 = - 4
x = - 4 - 5
x = -9
b) (2x - 3)2=9
2x - 3 = 3
2x = 3+3
2x = 6
x = 6 : 2
x = 3
e) \(\dfrac{8}{2x}=4\)
=> 4 . 2x = 8
8x =8
x = 8 : 8
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)
=> x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(\dfrac{1}{4}.x=\dfrac{1}{32}\)
x = \(\dfrac{1}{32}:\dfrac{1}{4}\)
x = \(\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\dfrac{-1}{27}\)
a) (x + 5)3 = -64
=> (x + 5)3 = (-4)3
x + 5 = -4
x = -4 - 5
x = -9
b) (2x - 3)2 = 9
=> (2x - 3)2 = (\(\pm\)3)2
=> 2x - 3 = 3 hoặc 2x - 3 = -3
*2x - 3 = 3
2x = 3 + 3
2x = 9
x = \(\dfrac{9}{2}\)
*2x - 3 = -3
2x = -3 + 3
2x = 0
x = 0 : 2
x = 0
Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)
c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)
=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)
\(\dfrac{x}{2}=8\)
x = 8 : 2
x = 4
d) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
=> (-2)n . (-2)2= (-2)5
(-2)n = (-2)5 : (-2)2
(-2)n = (-2)3
Vậy n = 3
e) \(\dfrac{8}{2x}=4\)
=> 2x . 4 = 8
2x = 8 : 4
2x = 2
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)
\(x=\left(\dfrac{1}{2}\right)^3\)
\(x=\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^3\)
\(x=\dfrac{-1}{27}\).
câu E
\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )
c. \(^{ }\left(2x+3\right)^2=\dfrac{9}{121}\)
=> \(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
=> 2x +3 = \(\dfrac{3}{11}\) hoặc 2x+3 = \(\dfrac{-3}{11}\)
=> x= \(\dfrac{-15}{11}\) hoặc x = \(\dfrac{-18}{11}\)
d. \(\left(2x-1\right)^3=\dfrac{-8}{27}\)
=> \(\left(2x-1\right)^3=\left(\dfrac{-2}{3}\right)^3\)
=> 2x-1 = \(\dfrac{-2}{3}\)
=> x= \(\dfrac{1}{6}\)
a)
Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)
\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)
Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :
\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)
b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:
\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)
c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)
\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)
d) \((2x-1)^3=-27=(-3)^3\)
\(\Rightarrow 2x-1=-3\)
\(\Rightarrow 2x=-2\Rightarrow x=-1\)
e) \((x-2)^2=1=1^2=(-1)^2\)
\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)
f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)
\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)
g) \((x-1)^2=(x-1)^6\)
\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)
\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)
\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x=\left\{0;1;2\right\}\)
a) x + 1 = 8 => x=7
b) x+1=4 => x=3
c) x+1=2 => x=1
d) 3x + 2 =2(x+ 5 )
3x - 2x = -2 + 10
x = 8
e) 2x - 1 = 5 (vì 243=35)
=> x = 3
f) x - 1/2 = 1/3
=> x = 5/6
Chỗ nào k hiểu nói mình nhé
a/ (x+1)^2=64
=>(x+1)^2= 8^2
=>x+1 = 8
=>x = 8-1 = 7
b/2^x+1 = 16
=> 2^ x+1 = 2^4
=> x+1 = 4
=> x = 3
e/3^2x-1= 243
=>3^2x-1 = 3^5
=>2x-1 = 5
=>2x = 6
=>x =3