Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^{23}=64.x^{20}\)
\(\Leftrightarrow\frac{x^{23}}{x^{20}}=64\)
\(\Leftrightarrow x^3=64\Rightarrow x=4\)
b)\(\left(4x-3\right)^4=3-4x\)
\(\Leftrightarrow\left(3-4x\right)^4=3-4x\)
\(\Leftrightarrow\left(3-4x\right)^3=1\)
\(\Leftrightarrow3-4x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Lớn hơn thì nhân tử cùng dấu
Nhỏ hơn thì nhân tử trái dấu
=> Xét hai trường hợp
a, Xét x+2>0
2x-5>0
Giải ra x b , c tương tự
(x - 2/7)(x + 1/4) > 0
Xét 2 trường hợp:
- \(\hept{\begin{cases}x-\frac{2}{7}>0\\x+\frac{1}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{2}{7}\\x>-\frac{1}{4}\end{cases}\Rightarrow}x>\frac{2}{7}}\)
- \(\hept{\begin{cases}x-\frac{2}{7}< 0\\x+\frac{1}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{2}{7}\\x< -\frac{1}{4}\end{cases}\Rightarrow}x< -\frac{1}{4}}\)
Vậy x > 2/7 hoặc x < -1/4
Ta có : (x + 2)(x2 - 9 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x^2-9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x^2=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3;3\end{cases}}\)
Ta có : x2(x - 5) + 2(x - 5) = 0
\(\Rightarrow\left(x^2+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\\x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-2\\x=5\end{cases}}\)
=> x = 5
f(x)=ax-b
=> f(2)=2a-b=8(thay x=2)
f(-2)=-2a-b=0(Thay x=-2)
Cộng vế với vế => 2a-b-2a-b=8
=> -2b=8
=>b=-4
=> a=2
a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
(x+2)2=0 |
(y−3)4=0 |
⇒[
x+2=0 |
y−3=0 |
⇒[
x=−2 |
y=3 |
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
(x+y−11)2=0 |
(x−y−4)2=0 |
⇒[
x+y=11 |
x−y=4 |
⇒[
x=(11+4):2=7,5 |
y=(11−4):2=3,5 |
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
từ giả thiết =>\(x+y+z+t=10\)
Ta có \(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\Rightarrow\frac{1}{4x}=\frac{2}{4y}=\frac{3}{4z}=\frac{4}{4t}=\frac{1+2+3+4}{4x+4y+4z+4t}=\frac{10}{4\left(x+y+z+t\right)}=\frac{10}{40}=\frac{1}{4}\)
đề t k bt là gì nên chỉ bt làm đến đây , còn bbước nào nữa thì bạn tự làm nốt nhé !
^_^
\(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\)
\(\frac{1}{4x}=\frac{1}{2y}=\frac{1}{\frac{4}{3}z}=\frac{1}{t}\)
\(\Rightarrow4x=2y=\frac{4}{3}z=t\)
\(\Rightarrow\frac{4x}{4}=\frac{2y}{4}=\frac{4z}{3.4}=\frac{t}{4}\)
hay \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}\)
Mà x + y + z + t - 10 = 0
x + y + z + t = 10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}=\frac{x+y+z+t}{1+2+3+4}=\frac{10}{10}=1\)
Từ đó suy ra : x = 1 ; y = 2 ; z = 3 ; t = 4
x2 + 4x + 3 = 0
\(\Leftrightarrow\)x2 + x + 3x + 3 = 0
\(\Leftrightarrow\)x(x + 1) + 3(x + 1) = 0
\(\Leftrightarrow\)(x + 1)(x + 3) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
Vậy....
1wwqewqerwrewr