Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4x}=\frac{2}{4y}=\frac{3}{4z}=\frac{4}{4t}=\frac{1+2+3+4}{4\left(x+y+z+t\right)}=\frac{10}{4.10}=\frac{1}{4}.\)
Từ đó tìm ra x
Ta có:
\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1
y=3k+2
z=4k+3
Thay vào: x - 2y + 3z = -10
(2k+1)-2x(3k+2)+3x(4k+3)= -10
(2k+1)-(6k+4)+(12k+9)= -10
(2k-6k+12k)+(1-4+9) = -10
8k + 6 = -10
8k = -16
k = -2
=> x = 2x(-2)+1 = -3
y = 3x(-2)+2 = -4
z =4x(-2)+3 = -5
Vậy .............
Nếu đúng nhớ **** cho mk nha!
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)
Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)
=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)
=> x + y + z - 6 = -10.9 : 3 = -30
=> x + y + z = -24
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
1.
Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)
tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi
#)Giải :
1)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{1}=1\\\frac{z}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\\z=3\end{cases}}}\)
Vậy x = 2; y = 1; z = 3
2)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=\frac{-24}{-4}=6\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=6\\\frac{y}{6}=6\\\frac{z}{3}=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=36\\z=18\end{cases}}}\)
Vậy x = 6; y = 36; z = 18
3)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{0,5}=\frac{y}{0,3}=\frac{x-y}{0,5-0,3}=\frac{1}{0,2}=5\Leftrightarrow\hept{\begin{cases}\frac{x}{0,5}=5\\\frac{y}{0,3}=5\\\frac{z}{0,2}=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2,5\\y=1,5\\z=1\end{cases}}}\)
Vậy x = 2,5; y = 1,5; z = 1
a) 5y = 72
=> y = 72/5
2x = 3y
<=> 2x = 3 . 72/5
<=> 2x = 216 / 5
<=> x =108/5
3x - 7y + 5z = -30
<=> 3 . 108/5 - 7. 72/5 + 5z = - 30
<=> 324/5 - 504/5 +5z = -30
<=> 5z = 6
<=> x = 6/5
câu a đoạn cuối z = 6/5 nha
b) x : y : z = 5 : 3 :4
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)
=> x =-605/ 7
=> y = -363 / 7
=> z = -484 / 7
từ giả thiết =>\(x+y+z+t=10\)
Ta có \(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\Rightarrow\frac{1}{4x}=\frac{2}{4y}=\frac{3}{4z}=\frac{4}{4t}=\frac{1+2+3+4}{4x+4y+4z+4t}=\frac{10}{4\left(x+y+z+t\right)}=\frac{10}{40}=\frac{1}{4}\)
đề t k bt là gì nên chỉ bt làm đến đây , còn bbước nào nữa thì bạn tự làm nốt nhé !
^_^
\(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\)
\(\frac{1}{4x}=\frac{1}{2y}=\frac{1}{\frac{4}{3}z}=\frac{1}{t}\)
\(\Rightarrow4x=2y=\frac{4}{3}z=t\)
\(\Rightarrow\frac{4x}{4}=\frac{2y}{4}=\frac{4z}{3.4}=\frac{t}{4}\)
hay \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}\)
Mà x + y + z + t - 10 = 0
x + y + z + t = 10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}=\frac{x+y+z+t}{1+2+3+4}=\frac{10}{10}=1\)
Từ đó suy ra : x = 1 ; y = 2 ; z = 3 ; t = 4