Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
\(=>2\cdot4^x+64\cdot4^x=1056\)
\(=>4^x\cdot\left(2+64\right)=1056\)
\(=>4^x=1056:66=16\)
\(=>4^x=4^2\)
\(=>x=2\)
ti ck nha
2.22x + 43.4x = 1056
=> 2.4x + 43.4x = 1056
=> (2 + 64).4x = 1056
=> 66.4x = 1056
=> 4x = 1056 : 66
=> 4x = 16
=> 4x = 42
=> x = 2
7.4x - 1 + 4x + 1 = 23
=> 7.4x.1/4 + 4x.4 = 23
=> (7/4 + 4).4x = 23
=> 23/4.4x = 23
=> 4x = 23 : 23/4
=> 4x = 4
=> x = 1
3x + 2 - 5.3x = 36
=> 3x.9 - 5.3x = 36
=> 3x.(9 - 5) = 36
=> 3x.4 = 36
=> 3x = 36 : 4
=> 3x = 9 = 32
=> 3x = 2
Gọi tổng trên là A.Ta có
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(2A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(2A=\frac{1}{3}-\frac{1}{15}\)
\(2A=\frac{5}{15}-\frac{1}{15}\)
\(2A=\frac{4}{15}\)
\(A=\frac{4}{15}:2\)
\(A=\frac{2}{15}\)
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`