K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

Bảng xét dấu:

    x                 1                 2                  3
  x - 1         -      0       +        |       +          |       +
  x - 2         -      |        -        0       +          |       +       
  x - 3      -      |        -         |       -          0       +

+) Với x < 1

Ta có: 1 - x + 2 - x + 3 - x = 2

=> 6 - 3x = 2

=> 3x = 4

=> x = 4/3 (ko thỏa mãn)

+) Với: 1 ≤ x < 2

Ta có: x - 1 + 2 - x + 3 - x = 2

=> 4 - x = 2

=> x = 2 (ktm)

+) Với 2 ≤ x < 3

Ta có: x - 1 + x - 2 + 3 - x = 2

=> x = 2 (thỏa mãn)

+) Với x ≥ 3

Ta có: x - 1 + x - 2 + x - 3 = 2

=> 3x - 6 = 2

=> 3x = 8

=> x = 8/3 (ktm)

Vậy x = 2

25 tháng 11 2017

1)   \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)\(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)

\(\Leftrightarrow\)   \(\frac{x+4}{2005}\)\(+\)\(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)\(+\)\(\frac{x+1}{2008}\)\(+\)1

\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)\(\frac{x +2009}{2006}\)\(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)

\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)

\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0

Ta thấy:  1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0

\(\Leftrightarrow\)x + 2009 = 0

\(\Leftrightarrow\)x = -2009

16 tháng 2 2021

\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=\left(x-1\right)\left(x-2\right)x=0\)

tìm đc x=0;1;2

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

24 tháng 6 2016

a) \(\left|x-2\right|+\left|x-5\right|=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)

Dấu''='' xảy ra \(\Leftrightarrow\begin{cases}x-2\ge0\\5-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le5\)

 

6 tháng 11 2016

a) |2x-2|=|2x+3|

TH1: 2x-2=2x+3

=> 2x-2=2x-2+5 ( vô lý )

=> Không tồn tại x

TH2: 2x-2=-2x-3

=> 2x+2x+3=2

=> 4x=-1

=> x=-1/4

Vậy: x=-1/4

b) \(A=\frac{1}{\sqrt{x-2}+3}\)

Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất

Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)

Dấu = xảy ra khi x=2

Vậy: \(Max_A=\frac{1}{3}\) tại x=2

c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)

\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)

\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)

\(\Rightarrow\frac{5}{x-2}< 0\)

\(\Rightarrow x< 2\)

5 tháng 11 2016

a)

|2x-2| = |2x+3|

<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)

<=> x = \(-\frac{1}{4}\)

5 ( x - 1 ) - 7 ( x - 2 ) = 2x - 39

<=> 5x - 5 - 7x + 14 = 2x - 39

<=> 5x - 7x - 2x = -39 + 5 - 14

<=> -4x = -48

<=> x = 12

x - 3 - 14.( x-2 )= -3x -3\(\Rightarrow\chi-3-28-14\chi-28=-3\chi-3\)

\(\Rightarrow\chi-3-28+3=-3\chi-3\)

\(\Rightarrow\chi-28=11\chi\)

\(\Rightarrow\chi-11\chi=28\)

\(\Rightarrow10\chi=28\Rightarrow\chi=2,8\left(kot.m\chi\inℤ\right)\)