K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Đặt \(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}=k\)

\(\Rightarrow x-18=k.\left(x+4\right)\Rightarrow x=\dfrac{4k+18}{1-k}\left(1\right)\)

\(x-17=k.\left(x+16\right)\Rightarrow x=\dfrac{16k+17}{1-k}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4k+18=16k+17\Rightarrow-12k=-1\Rightarrow k=\dfrac{1}{12}\)

\(\Rightarrow x=\dfrac{4.\dfrac{1}{12}+18}{1-\dfrac{1}{12}}=\dfrac{\dfrac{55}{3}}{\dfrac{11}{12}}=20\)

Vậy x = 20

30 tháng 7 2018

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

(x\(-\)18).(x+16)=(x-17).(x+4)

x\(^2\)-18x+16x-18.16=x\(^2\)-17x+4x-4.17

x\(^2\)-18x+16x-288=x\(^2\)-17x+4x-68

x\(^2\)-18x+16x-x\(^2\)+17x-4x=-68+288

11x=220

x=220/11

x=20

27 tháng 7 2018

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

⇒ (x-18) . (x+16) = (x-17) . (x+4)

x(x+16) -18(x+16) = x(x+4) - 17(x+4)

\(x^2+16x-18x-288=x^2+4x-17x-68\)

\(x^2+16-18x-x^2-4x+17x=-68+288\)

11x=220

x= 220 : 11

x = 20

27 tháng 7 2018

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

\(\Leftrightarrow\left(x-18\right)\left(x+16\right)=\left(x-17\right)\left(x+4\right)\)

\(\Leftrightarrow x^2-2x-288=x^2-13x-68\)

\(\Leftrightarrow220=11x\)

\(\Leftrightarrow x=20\)

\(\)

30 tháng 8 2017

\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)

\(\Rightarrow\dfrac{x-1}{50}-1+\dfrac{x-2}{49}-1=\dfrac{x-3}{48}-1+\dfrac{x-4}{47}-1\)

\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}=\dfrac{x-51}{48}+\dfrac{x-51}{47}\)

\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}-\dfrac{x-51}{48}-\dfrac{x-51}{47}=0\)

\(\Rightarrow\left(x-51\right)\left(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\right)=0\)

\(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\ne0\) nên \(x-51=0\Rightarrow x=51\)

\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)

\(\Rightarrow\dfrac{x+25}{6}+1+\dfrac{x+20}{11}+1+\dfrac{x+16}{15}+1=0\)

\(\Rightarrow\dfrac{x+31}{6}+\dfrac{x+31}{11}+\dfrac{x+31}{15}=0\)

\(\Rightarrow\left(x+31\right)\left(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\right)=0\)

\(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\ne0\) nên \(x+31=0\Rightarrow x=-31\)

\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)

\(\Rightarrow\dfrac{x-15}{6}-1+\dfrac{x-10}{11}-1=\dfrac{x-3}{18}-1+\dfrac{x-7}{14}-1\)

\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}=\dfrac{x-21}{18}+\dfrac{x-21}{14}\)

\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}-\dfrac{x-21}{18}-\dfrac{x-21}{14}=0\)

\(\Rightarrow\left(x-21\right)\left(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\right)=0\)

\(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\ne0\) nên \(x-21=0\Rightarrow x=21\)

30 tháng 8 2017

lần sau nhớ ghi rõ các phần ra , nhìn thek này phân biệt hơi khó :v

9 tháng 9 2018

Bài 1.

Giải

a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)

\(\Rightarrow21⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)

\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bẳng sau:

\(n-4\) \(-21\) \(-7\) \(-3\) \(-1\) \(1\) \(3\) \(7\) \(21\)
\(n\) \(-17\) \(-3\) \(1\) \(3\) \(5\) \(7\) \(11\) \(25\)

Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)

b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)

\(\Rightarrow8⋮\left(2n-1\right)\)

\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)

\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

\(2n-1\) \(-8\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\) \(8\)
\(2n\) \(-7\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\) \(9\)
\(n\) \(\dfrac{-7}{2}\) \(\dfrac{-3}{2}\) \(\dfrac{-1}{2}\) \(0\) \(1\) \(\dfrac{3}{2}\) \(\dfrac{5}{2}\) \(\dfrac{9}{2}\)

Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)

9 tháng 9 2018

Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!

Bài 2:

\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:

\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:

\(x-2018=0\Leftrightarrow x=2018\)

Bài 3:

a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)

Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)

Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)

Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)

b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)

\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.

9 tháng 8 2017

\(\dfrac{x}{4}=\dfrac{18}{x+1};x^2+1=72\)

\(\)\(\Rightarrow x\left(x+1\right)=18.4\)

\(\Rightarrow x^2+x=72\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+1=72\\x^2+x=72\end{matrix}\right.\)

\(\Rightarrow x^2+1=x^2+x\)

\(\Rightarrow x=1\)

11 tháng 8 2017

thanks, bn cs thể làm giúp mik phần b nữa đc hông?

12 tháng 11 2016

Đặt \(\frac{x-18}{x+4}=\frac{x-17}{x+16}=k\)

Suy ra: \(x-18=k\left(x+4\right)\Rightarrow x=\frac{4k+18}{1-k}\left(1\right)\\ x-17=k\left(x+16\right)\Rightarrow x=\frac{16k+17}{1-k}\left(2\right)\)

Từ (1) và (2) ta được: \(4k+18=16k+17,\) suy ra \(k=\frac{1}{12},x=20\)

12 tháng 11 2016

Hôm nay cô giao bài nhìu, tui đăng nhìu, vất vả nhìu cho chú đấy

26 tháng 10 2017

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\Leftrightarrow\left(x-18\right)\left(x+16\right)=\left(x+4\right)\left(x-17\right)\)

\(\Leftrightarrow x^2+16x-18x-288=x^2-17x+4x-68\)

\(\Leftrightarrow x^2+16x-18x-288-\left(x^2-17x+4x-68\right)=0\)

\(\Leftrightarrow x^2+16x-18x-288-x^2+17x-4x+68=0\)

\(\Leftrightarrow11x-220=0\Leftrightarrow11x=220\Leftrightarrow x=\dfrac{220}{11}=20\)

vậy \(x=20\)

a) 27x : 3x = 9

(27 : 3)x = 9

9x = 91

x = 1

b) 25 : 5x =5

5x = 25 : 5

5x = 51

x = 1

c) 2 : (x + 2)2 = \(\dfrac{1}{18}\)

(x + 2)2 = 2 : \(\dfrac{1}{18}\)

(x + 2)2 = 36

\(\Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)

d) (5x - 1)2 = \(\dfrac{36}{49}\)

(5x - 1)2 = \(\left(\dfrac{6}{7}\right)^2\)

Bạn làm tiếp nha, mình có việc bận :v

22 tháng 9 2018

3, Tìm x, biết

\(d,\dfrac{-16}{x}=\dfrac{x}{-4}=>x^2=\left(-16\right).\left(-4\right)=>x^2=64\)

\(=>x=8\) hay \(x=-8\)

\(e,\dfrac{x}{-2}=\dfrac{\dfrac{8}{25}}{-x}=>-x^2=-2.\dfrac{8}{5}=\dfrac{-16}{25}\)

\(=>-x^2=0,64=>x=0,8\)

\(g,\dfrac{x}{-15}=\dfrac{-60}{x}\)

\(=>x^2=\left(-15\right).\left(-60\right)\)\(=>x^2=900=>x=30\) hay \(x=-30\)

22 tháng 9 2018

d) \(\dfrac{-16}{x}=\dfrac{x}{-4}\)

= 16 . 4 = x.x

= 64 = \(x^2\)

= \(8^2=x^2\)

vậy x = 8

e)\(\dfrac{x}{-2}=\dfrac{8}{\dfrac{25}{-x}}\)

= -2 . \(\dfrac{8}{25}\) = -x . x

= -0,64 = \(-x^2\)

= 0,64 = \(x^2\)

0,8\(^2=x^2\)

vậy x = 0,8

g) \(\dfrac{x}{-15}=\dfrac{-60}{x}\)

= -15 . -60 = x.x

= 900 = \(x^2\)

30 \(^2=x^2\)

vậy x = 30

21 tháng 6 2017

\(\left|x+\dfrac{11}{17}\right|\ge0\)

\(\left|x+\dfrac{2}{17}\right|\ge0\)

\(\left|x+\dfrac{4}{17}\right|\ge0\)

\(\Leftrightarrow\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|\ge0\)

\(\Leftrightarrow x+\dfrac{11}{17}+x+\dfrac{2}{17}+x+\dfrac{4}{17}=4x\)

\(3x+\left(\dfrac{11}{17}+\dfrac{2}{17}+\dfrac{4}{17}\right)=4x\)
\(3x+1=4x\Leftrightarrow4x-3x=1\Leftrightarrow x=1\)

Vậy...

21 tháng 6 2017

Ta có: \(\left\{{}\begin{matrix}\left|x+\dfrac{11}{17}\right|\ge0\\\left|x+\dfrac{2}{17}\right|\ge0\\\left|x+\dfrac{4}{17}\right|\ge0\end{matrix}\right.\Leftrightarrow\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|\ge0\)

\(\Leftrightarrow4x\ge0\Leftrightarrow x\ge0\)

\(\Leftrightarrow x+\dfrac{11}{17}+x+\dfrac{2}{17}+x+\dfrac{4}{17}=4x\)

\(\Leftrightarrow3x+1=4x\)

\(\Leftrightarrow x=1\)

Vậy x = 1